
Project 3: Distributed File System

14-736 Spring 2020

Assigned: Monday, 16th March
Checkpoint due: Sunday, 29th March
Final Submission: Sunday, 5th April

Contents

1 Overview 1

2 Logistics 1

3 Checkpoint 1

4 Detailed Description 1
4.1 Communications . 2
4.2 Paths . 2
4.3 Storage Servers . 2
4.4 Naming server . 3
4.5 Coherence and Thread Safety . 3
4.6 Locking . 4
4.7 Replication . 4

5 APIs 5

6 Programming Languages 5

7 Implementation and Configuration for Servers 5

8 Grading (100 points) 6
8.1 Testing (90 points) . 6
8.2 Coding Style (10 points) . 7

9 Important notes and tips 7

Project 3 14-736: Distributed System

1 Overview

In this project, you will implement a simple distributed file system. Files will be hosted remotely
on one or more storage servers. Separately, a single naming server will index the files, indicating
which one is stored where. When a client wishes to access a file, it first contacts the naming
server to obtain the IP address and client port of the storage server hosting it. After that, it
communicates directly with the storage server to complete the operation.

When completed, your file system will support file reading, writing, creation, deletion, and size
queries. It will also support certain directory operations - listing, creation and deletion. It will be
possible to lock files, and commonly accessed files will be replicated on multiple storage servers.

2 Logistics

You should work with a partner on this project. Mention the names and IDs of both partners in
a group.txt file. Be sure to include all files necessary to compile and run the file system. Your
archive (.zip) should contain everything needed to compile your code and test suite. Normally,
your archive will contain a naming directory and a storage directory which contains your naming
server implementation and storage server implementation and all the code we provide you for
test. This project requires you to have an environment which has Java installed no earlier than
Java 8 and OpenJDK 11 installed (our test uses java.net.http which is in OpenJDK 11). The
final grading is done on unix andrew machine so please make sure your code is compilable on unix
andrew machine.

3 Checkpoint

This project involves a large amount of work, and many features must be implemented before
it is complete. To help you with this, we suggest a checkpoint, for which you should implement
all file and directory operations except locking and replication. The checkpoint is a convenient
intermediate goal for you to work towards. Your checkpoint submissions won’t be graded but a
penalty may be applied to your final grade if you submit your checkpoint late. Notice, you can’t
use any grace day for checkpoint.

4 Detailed Description

As the Figure 1 shows, the file system consists of several major components.

First, servers and clients need a way to identify files. Each file is identified by its path (string) in
the distributed file system. The paths are transmitted through the various interfaces in the file
system.

The primary function of storage servers is to provide clients with access to file data. Clients
access storage servers in order to read and write files. Since storage servers store the data, they
are also, in this design, the entities that report file sizes. Storage servers also must respond to
certain commands from the naming server.

Clients do not normally have direct access to storage servers. Instead, their view of the file system
is defined by the file system’s single naming server, for which clients have the naming server’s
IP address and service port. The naming server tracks the file system’s directory tree, and asso-
ciates each file in the file system to a storage server. When a client wishes to perform an operation
on a file, it first contacts the naming server to obtain the IP address and client port of the storage
server hosting the file, and then performs the operation through the IP address and client port.
Naming servers also provide a way for storage servers to register their presence.

Page 1

Project 3 14-736: Distributed System

4.1 Communications

First we need to understand how the communications happen among the naming server, storage
servers, and clients. All the communications in this project are through HTTP-based RESTful
APIs. Every component of our system provides a uniform interface, which is fundamental to the
design of any RESTful system. It simplifies and decouples the architecture, which enables each
part to evolve independently. Individual resources are identified in requests by using URIs in
RESTful Web services. The resources themselves are conceptually separate from the representa-
tions that are returned to the client. We choose to send all data in JSON format. The APIs you
need to implement are specified in the handout folder API/.

4.2 Paths

As stated above, paths are represented by string, which are transmitted through all interfaces in
the file system. Notionally, each path is a string of the form /directory/directory/directory-or-file,
but you may choose any internal representation you want - for example, you may represent a path
internally as an array of path components. Paths are always taken to be relative to the root of
the file system. Finally, the file system locking scheme requires paths to be comparable. See the
section on locking for details.

4.3 Storage Servers

Storage servers provide two interfaces:

1. The client interface (document: API/API Storage Storage.md), through which clients per-
form file operations. It provides the client with three operations: file reading, file writing,
and file size query.

2. The command interface (document: API/API Storage Command.md), through which the
naming server may issue file management commands to the storage server. It allows the
naming server to request that a file on the storage server be created, deleted, or copied from
another storage server, as part of replication.

The job of the storage server is simply to respond to these requests. These requests may come in
concurrently.

A question arises - where does the storage server actually store the data for the files it is hosting?
In this design, the storage server is required to put all its files in a directory on the machine that it
is running on - this will be referred to as the storage server’s local or underlying file system. The
structure within this directory should match the storage server’s view of the structure of the entire
distributed file system. For example, if a storage server is storing its files in the local directory
/var/storage, and it is hosting a file whose distributed file system path is /directory/README.txt,

Figure 1: Distributed File system

Page 2

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

Project 3 14-736: Distributed System

then that file’s full path on the local file system should be /var/storage/directory/README.txt.
If a storage server is not aware of the existence of a file in the file system (because it is hosted by
another storage server), it need not store anything for the file. This scheme provides a convenient
way to make data persist across storage server restarts.

4.4 Naming server

The naming server can be thought of as an object containing a data structure which represents
the current state of the file system directory tree, and providing several operations on it. It also
provide two interfaces:

1. The service interface (document: API Naming Service.md). For the optional checkpoint,
the service interface allows a client to create, list, and delete directories, create and delete
files, determine whether a path refers to a directory or a file (or neither), and obtain IP
address and client port for storage servers. For the final version, the service interface also
allows clients to lock and unlock files and directories.

2. The registration interface (document: API Naming Registration.md), which storage servers
use to inform the naming server of their presence and join the file system. The registration
interface is used once by each storage server on startup. When a storage server is started, it
contacts the naming server and provides the naming server with its IP address and two port
numbers: one for the storage server’s client interface, which the naming server will later
provide to clients, and one for the storage server’s command interface, which the naming
server will use to maintain the storage server’s view of the file system in a consistent state.
The storage server also lists all files that are present in its directory on its underlying file
system. If any of those files are not yet listed in the distributed file system, they are added.
The rest are considered duplicates, and the naming server will request that the storage
server delete them.

In the final version of your file system, the naming server transparently performs replication of
commonly accessed files, causing multiple storage servers to maintain copies of the same file. This
is not under the direct control of the client. The details are given in the section on replication.

4.5 Coherence and Thread Safety

Each server in the file system must individually be thread-safe: attempting to perform operations
concurrently on a single server should never cause that server’s state to become inconsistent. The
consistency requirements across the whole file system, however, are much more relaxed. The
design is fairly fragile and depends strongly on having well-behaved clients. For the version up to
the checkpoint (and therefore without locking), consistency also depends on luck.

At the checkpoint, without locking, clients maintain no special state over a file that would allow
them to consider the file “open” or reserved for their own purposes. This means that, while
a single read or write request should complete correctly once it arrives at the storage server,
any other client may interfere between requests. Files currently being accessed by a client may
be overwritten by another client, deleted, moved to another storage server, and re-created, all
without the client noticing. The Final version of the project allows a client to lock a file in order
to prevent other well behaved clients from performing any of these operations until the lock is
released.

When implementing the storage and naming servers, you must decide when is the appropriate
time for the naming server to command each storage server to create or delete files or directories,
thus maintaining the servers’ views of the file system in a consistent state. As much as possible, it
is preferable to avoid having to rigidly and synchronously maintain all storage servers in the same
state. However, the interfaces are highly simplified and do not provide good ways to implement
complex schemes for lazy file creation or deletion, so code accordingly. As an example, a file

Page 3

Project 3 14-736: Distributed System

that the naming server has been successfully asked to delete should not remain accessible for
subsequent requests to the storage server.

We ask that files that have been deleted from the storage server be deleted from the underlying file
system (as opposed to merely unlinked from some internal data structure), and that the storage
server eagerly remove underlying file system directories that have become empty. This allows us
to test the behavior of your storage server in response to requests.

4.6 Locking

For the final version, you must implement a custom lock type and a particular locking scheme,
which well-behaved clients can use to ensure consistency across multiple requests. Each file and
directory may be locked for shared (reading) or exclusive (writing) access. Multiple clients may
lock the same object (file or directory) for shared access at the same time, but when a client locks
an object for exclusive access, no other client can lock the same object for any kind of access.

Shared access permits multiple well-behaved clients to perform operations such as reading files and
listing directories simultaneously. Such operations do not interfere with each other: for example,
two clients may safely read the same file at the same time. Exclusive access permits well-behaved
clients to write to files and modify the directory tree.

When a client requests that any object be locked for any kind of access, all objects along the
path to that object, including the root directory, must be locked for shared access. Otherwise, for
example, a file that is locked for reading (shared access) can still be deleted when another client
removes its parent directory, because the parent directory was not locked by the reading client.
Be careful about the order in which you take these locks on parent directories. If locks are taken
in haphazard order, it is possible to end up with a deadlock where two clients are each holding a
lock, and both seek to also take the lock held by the other client in order to proceed.

The locking scheme has a further constraint. Some clients may need to lock multiple objects
simultaneously. Doing this in arbitrary order on each client can also result in deadlock for the
same reason. Therefore, we require that path objects be comparable. Clients must take locks on
path objects in order from least path to greatest path, according to the results of comparison.
This requirement interacts with the requirement to lock subdirectories: when an object is locked,
it is not only the object itself whose lock is taken, but the lock on every object along the path
to it. Great care must be taken to ensure that the order defined by the comparison does not
lead to deadlocks due to this interaction. Be very careful about how you compare path objects.
We ask that you describe your locking scheme and comparison scheme, and their interaction, in
comments of your lock implementation.

In addition to all of the above, the locks must also provide some measure of fairness. It should not
be the case that a client which is waiting for a lock is continuously denied it, and the lock is given
to other clients that requested the lock later. This is especially important for clients requesting
exclusive access. In the absence of fairness constraints, a large number of readers will make it
impossible for any client to write to a file. The writing client will wait for the lock as new readers
keep arriving and sharing the lock with current readers.

In order to avoid this, in this project, we require that you give the lock to clients on a first-come,
first-serve basis. It must never be the case that a client which requests a lock later is granted
access before a client which requested earlier, unless both clients are requesting the lock for shared
access. In the latter case, however, if two clients are requesting the lock for shared access, and
there are no intervening waiting clients, both clients must be able to take the lock at the same
time.

4.7 Replication

The final version of the project must support replication according to the following simple policy:
during a series of read requests, the file is replicated once for every 20 read requests, provided

Page 4

Project 3 14-736: Distributed System

there are enough storage servers connected to the naming server to maintain additional copies.
At a write request, the naming server selects one storage server to keep a copy of the file, and all
other copies are invalidated (removed) before the remaining copy is updated.

Since the naming server has no way of directly tracking read and write requests, or the amount
of traffic associated with each file, it makes the simplifying assumption that taking a shared lock
on a file is tantamount to a read request, and taking an exclusive lock is a write request.

Be careful about how replication interacts with locking. Well-behaved clients should not be able
to interfere with the replication (copy) operation and cause the results to become inconsistent.
Well-behaved clients should, however, be able to read from existing copies of a file, even as a new
copy is being created.

5 APIs

In the API documents, many API will have this kind of JSON response:

{
“exception type”: “FileNotFoundException”,
“exception info”: “File/path cannot be found.”
}

In these cases, our tests expect your server to return EXACTLY the same “exception type” field,
no matter what programming languages you are using, so make sure you follow the specification for
“exception type”. The HTTP return code and the “exception info” field are not so important,
we won’t test whether you also have the same return code and “exception info” and they are
designed only to help you debugging.

In the handout, you could see a lot of Java helper classes under jsonhelper/. These are classes
our test suite uses to parse the request data from JSON and generates responses to JSON. Our
test suite uses gson-2.8.6.jar to help us convert Java Objects into JSON and back. In our API
documents, we also explicitly tell you which helper class we use for each API. Do NOT modify
anything in jsonhelper/ ! If you choose to use Java to implement your server, you are free to use
the same helper classes we provide, or you can write your own.

Because all the communication data is converted to JSON in our system, there is a potential
problem for read() and write(), where we must send bytes array to the server. But JSON doesn’t
support byte[]. You may use base64 encoding/decoding to solve this problem. See the link for
more information. Make sure that the programming language you choose has support for base64
encoding/decoding. You could use third-party libraries to achieve this.

6 Programming Languages

Although the test suite is written in Java, it strictly follows the RESTful APIs specified in API/
to test your code, which means that you could use whatever programming languages you want
to implement your naming server and storage server, as long as you also strictly follow the API
specifications. Please use common programming languages so that we could help you better.

7 Implementation and Configuration for Servers

The handout includes all files requested to build the test suite. What you need to do is create
2 new directories, add your own naming server implementation under naming/ and your own
storage server implementation under storage/.

Page 5

https://stackoverflow.com/questions/20706783/put-byte-array-to-json-and-vice-versa

Project 3 14-736: Distributed System

Please have a look at the file test/port.config. Your naming server should accept 2 arguments
upon start.

• port number for its service interface

• port number for its registration interface.

Your storage server should accept 4 arguments upon start.

• port number for its client interface

• port number for its command interface

• port number of the naming server’s registration interface (it need to know this to register
itself to the naming server upon start)

• the local directory in which the storage server is to locate the files it is to serve. (your
storage server should create this directory upon start if it does not exist).

After you finish your naming server and storage server’s implementation, there is one more thing
to do: modify the current Makefile so that when we run ‘make’, it will compile all tests (we have
already done this) as well as your naming server and storage server.

The final thing to do: please have a look at the file test/Config.java. It specifies the command
to start the naming server and 2 storage servers (Yes! We need to start 2 storage servers to test
your storage replication implementation!). Our test will use these 3 lines to start your servers as
background processes. If you are using Java to implement your server, then perhaps you don’t
need to change this. But if you are using other programming languages, you need to modify these
3 lines to make sure that we can use them to start your servers under the root directory of this
project.

8 Grading (100 points)

8.1 Testing (90 points)

When testing your code, the test suite will start your naming server and multiple storage servers
as background processes, which means that you couldn’t see your server’s standard output or
standard error through the terminal. You could redirect your server’s output and error to file to
assist your debugging (for Java, you can have a look at System.setOut and System.setErr).

We test your naming server implementation and storage server implementation separately, which
means that you could even pass all naming server’s tests without implementing your storage server
and vice versa. This is because we have ‘fake’ server implementations in the test suite to isolate
yours. The bug in your naming server won’t affect your storage server, and the bug in your storage
server won’t affect your naming server.

Before implementing your own naming server, you can have a look at the file test/storage/Test-
NamingServer.java. This is a very simple naming server implementation in Java which only
implements the registration interface for testing purposes. The register() implementation doesn’t
meet the real naming server’s requirement. But we hope you could understand the logic of the
naming server, for example, the naming server should have 2 built-in HTTP servers to listen on
different ports which have different handlers to handle different incoming URIs. The file Test-
StorageServer.java under test/naming might also be helpful.

After you modify the Makefile and test/Config.java. Now it’s time to test!
Under the root directory of this project:
To run tests for checkpoint: make checkpoint
To run tests for final: make test

Page 6

Project 3 14-736: Distributed System

8.2 Coding Style (10 points)

Please maintain a good and consistent coding style for all the code you write. You may use a
different coding style from the starting code, but please keep it readable and consistent in all
the files you modify or produce. To get full points for coding style, your code needs to meet the
following requirements.

1. File header for each file you create

2. Function header for each function

3. Good variable naming

4. No dead code, no obsolete comment

5. Good modularity

6. Brief comment for function logic, variable usage

9 Important notes and tips

1. We recommend you first read this writeup, then read the API documents under API/. After
this, you will have a basic understanding of the duty of the naming server and the storage
server.

2. Be careful about what local directory you start the storage server in. Storage servers register
with a naming server on startup. Every file in the storage server’s directory on the underlying
file system which is already present in the distributed file system will then be deleted to
eliminate duplicates. This means if you start a storage server in a directory, a large number
of files could suddenly disappear. Make sure this is not an important directory. The test
cases only start storage servers in temporary directories.

3. When implementing locks for the final version of your file system, you must not simply make
every method of the naming server synchronized, and then take locks. This will decrease
concurrency. Instead, you are expected to rely on the per-object locks to ensure thread
safety as much as possible. Two clients should be able to traverse the same directories
simultaneously within the naming server, provided they are locking the objects along the
way for shared access.

4. The storage’s copy interface, which is used for replication, may be used to replicate very
large files. Such files cannot be stored in the virtual machine’s memory all at once. To
simplify this, you may assume that we won’t test to read/write/copy very large files.

5. The section on replication is very short, because replication is easy to specify. It is, how-
ever, not trivial to implement. Replication is a potentially long-running process that runs
concurrently with many other processes, including accesses to existing copies of the le being
replicated. Allow yourself adequate time to think through, design, and test the replication
mechanism.

6. If you are using Java. Be careful about the semantics of standard Java methods. The
documentation is often terse and assumes a certain understanding (or willingness to test),
and may act in somewhat unexpected ways in corner cases. For example, File.mkdirs, which
might be useful for your storage server to manage the underlying file system, will

7. return false if the directory it is asked to create already exists. This could lead to an
annoying corner case if you always blindly call this method, taking it to mean “ensure that
the directory exists.

8. If you use random number generators for deciding which server should store a new file, or for
picking servers during replication or read accesses, be aware that Java’s standard random
number generator is not thread-safe.

Page 7

Project 3 14-736: Distributed System

References
File management (File object is really more like a path)
http://docs.oracle.com/javase/6/docs/api/java/io/File.html

Java synchronization
http://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

START EARLY!

Page 8

http://docs.oracle.com/javase/6/docs/api/java/io/File.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

	Overview
	Logistics
	Checkpoint
	Detailed Description
	Communications
	Paths
	Storage Servers
	Naming server
	Coherence and Thread Safety
	Locking
	Replication

	APIs
	Programming Languages
	Implementation and Configuration for Servers
	Grading (100 points)
	Testing (90 points)
	Coding Style (10 points)

	Important notes and tips

