Paxos

14-736 (Distributed Systems)

This lecture based heavily upon :

¢ Lamport, Leslie, “Paxos Made Simple”, 01 Nov 2001.

https://www.quora.com/In-distributed-systems-what-is-a-simple-explanation-of-the-Paxos-algorithm

Consensus

* A collection of process can propose values. A consensus algorithm ensures

* That a single proposal is chosen
* The processes can learn the proposed value

* No value is chosen if there are no proposals.

Consensus Safety Requirements

* Only a value that has been proposed may be chosen

. * Only a single value is chosen, and

* A process never learns that a value has been chosen unless it has been

Goal, Simply Put

The goal of the Paxos algorithm 1s for some number of peers to reach
agreement on a value.

Paxos guarantees that if one peer believes some value has been agreed upon
by a majority, the majority will never agree on a different value.

Liveness, By Intuition

* A proposed value 1s eventually chosen

* Once a value 1s chosen, the processes eventually learn it

Communication

* Agents operate at arbitrary speed

* Agents may fail by stopping and then be restarted

* Unless some information can be remembered across restart, consensus isn’t possible

Mechanism

* The protocol is designed so that any agreement wust go through a majority

. of nodes.
* Any future attempts at agreement, if successful must also go through at least

one of those nodes.

* Thus: Any node that proposes after a decision has been reached must
communicate with a node in the majority. The protocol guarantees
that it will learn the previously agreed upon value from that majority.

Three Phases

& Prepare
* Aceept
* Decided

Prepare Phase:

Prepare and Promise

* Tirst, we have the prepare phase. A sends a prepare request to A, B and C.

Paxos relies on sequence numbers to achieve its guarantees.

The prepare request asks a node to promise: "I will never accept any proposal with a
sequence number less than that in the prepare request.”

The nodes reply with any value they have previously agreed to (if any).

Node A must propose the value it receives with the highest sequence
number. This action provides the guarantee the previously agreed upon values will be
preserved.

Accept Phase !

* A sends an accept request to A, B and C.

. * The accept request states: "Do you accept foo?"

* If the accompanying sequence number 1s not below the what the node had previously

promised or request the node has previously accepted, it will accept the new value and
sequence numbet.

* If node A receives accepts from a majority of nodes, the value is
decided. This round of Paxos will never agree to another value

Decided/Accepted Phase

The third phase 1s not strictly necessary, but is a crucial optimization in any
productionized Paxos implementation.

After A receives a majority of accepts, it sends decided messages to A, B and C.

These messages let all the peers know that a value has been chosen, and accelerate
the end of the decision process.

Without this message, the other peers would have to attempt to propose a value to
learn of the agreement.

* In the prepare phase, they'd learn of the previously agreed upon value. Once that agreement
was driven to conclusion, the node would recognize the agreement.

Paxos Message Flow

Client Proposer Acceptor Learner
) R Request

Xemmmmmmm- >|->]-> Prepare(1)
{mmmmm e X--X--X Promise(1,{Va,Vb,Vc})

X-=-=------- >l->1-> Accept!(1,Vn)
R X--X--X------ >|->| Accepted(1,Vn)

T X--X Response
o |

https:/ /en.wikipedia.org/wiki/Paxos_(computer_science)

T

Message Flow: Failure ot Acceptor

Client Proposer Acceptor Learner

|
. X-------- > | Request

) GRS >|->]->] Prepare(1)

! Il FAIL !!

{mmmmmeo o - X--X Promise(1,{null,null, null})
X--=------- >1-> Accept!(1,V)

S X--X---=------ >|->| Accepted(1,V)
T X--X Response

https:/ /en.wikipedia.org/wiki/Paxos_(computer_science)

Message Flow:
Failure of Redundant Learner

Client Proposer Acceptor Learner

-) P > Request
) CRpE—— >|->]-> Prepare(1)

{-==m--=-- X--X--X Promise(1,{null,null,null})
) R >I->-> Accept!(1,V)

{=mmmmmm - X-=-X--X------ >|->| Accepted(1,V)

1l FATIL !!
T Y X Response

https:/ /en.wikipedia.org/wiki/Paxos_(computer_science)

Message Flow: ;
Failure of Proposer

Client Proposer Acceptor Learner

Request
Prepare(1)
Promise(1,{null, null, null})

|

|

|

|

| !! Leader fails during broadcast !!
| Accept!(1,Va)
|

|

|

|

|

|

'l NEW LEADER !!

Prepare(2)

Promise(2,{null, null, null})
Accept!(2,V)

Accepted(2,V)

--X Response

X — X —— — — — — X — —

https:/ /en.wikipedia.org/wiki/Paxos_(computer_science)

e e e T —— —— - . M . T

Multi-Paxos

* If leader is stable, no need for Prepare phase

- * Include round number included in proposal.

* Incremented with each proposal from same leader.

https:/ /en.wikipedia.org/wiki/Paxos_(computer_science)

