
Redis Cluster

a pragmatic approach to distribution

Source: Redis.io

All nodes are directly

connected with a

service channel.

TCP baseport+4000,
example 6379 ->
10379.

Node to Node protocol

is binary, optimized for
bandwidth and speed.

Clients talk to nodes as

usually, using ascii

protocol, with minor
additions.

Nodes don't proxy
queries.

What nodes talk about?

PING: are you ok dude?

I'm master for XYZ hash slots.

Config is FF89X1JK

Gossip: this are info about

other nodes I'm in touch with:

A replies to my ping, I think its

state is OK.

B is idle, I guess it's having

problems but I need some

ACK.

PONG: Sure I'm ok dude!

I'm master for XYZ hash slots.

Config is FF89X1JK

Gossip: I want to share with

you some info about random
nodes:

C and D are fine and replied in

time.

But B is idle for me as well!

IMHO it's down!.

Hash slots

keyspace is divided into 4096 hash slots. But in this example

we'll assume they are just ten, from 0 to 9 ;)

Different nodes will hold a subset of hash slots.

A given key "foo" is at slot:

slot = crc16("foo") mod NUMER_SLOTS

Master and Slave nodes

Nodes are all connected and functionally equivalent, but

actually there are two kind of nodes: slave and master nodes:

Redundancy

In the example there are two replicas per every master node, so
up to two random nodes can go down without issues.

Working with two nodes

down is guaranteed, but in

the best case the cluster

will continue to work as
long as there is at least

one node for every hash

slot.

What this means so far?

Every key only exists in a single instance, plus N replicas
that will never receive writes. So there is no merge, nor

application-side inconsistency resolution.

The price to pay is not resisting to net splits that are bigger
than replicas-per-hashslot nodes down.

Master and Slave nodes use the Redis Replication you

already know.

Every physical server will usually hold multiple nodes, both
slaves and masters, but the redis-trib cluster manager

program will try to allocate slaves and masters so that the

replicas are in different physical servers.

Client requests - dummy client

1. Client => A: GET foo

2. A => Client: -MOVED 8 192.168.5.21:6391

3. Client => B: GET foo

4. B => Client: "bar"

-MOVED 8 ... this error means that hash slot 8 is located at

the specified IP/port, and the client should reissue the query

there.

Client requests - smart client

1. Client => A: CLUSTER HINTS
2. A => Client: ... a map of hash slots -> nodes

3. Client => B: GET foo

4. B => Client: "bar"

Client requests

Dummy, single-connection clients, will work with minimal
modifications to existing client code base. Just try a random

node among a list, then reissue the query if needed.

Smart clients will take persistent connections to many
nodes, will cache hashslot -> node info, and will update the

table when they receive a -MOVED error.

This schema is always horizontally scalable, and low

latency if the clients are smart.

Especially in large clusters where clients will try to have

many persistent connections to multiple nodes, the Redis

client object should be shared.

Re-sharding

We are experiencing too much load. Let's add a new server.
Node C marks his slot 7 as "MOVING to D"

Every time C receives a request about slot 7, if the key is

actually in C, it replies, otherwise it replies with -ASK D

-ASK is like -MOVED but the difference is that the client
should retry against D only this query, not next queries.

That means: smart clients should not update internal state.

Re-sharding - moving data

All the new keys for slot 7 will be created / updated in D.
All the old keys in C will be moved to D by redis-trib using

the MIGRATE command.

MIGRATE is an atomic command, it will transfer a key from

C to D, and will remove the key in C when we get the OK
from D. So no race is possible.
p.s. MIGRATE is an exported command. Have fun...

Open problem: ask C the next key in hash slot N, efficiently.

Re-sharding with failing nodes

Nodes can fail while resharding. It's slave

promotion as usually.

The redis-trib utility is executed by the

sysadmin. Will exit and warn when

something is not ok as will check the

cluster config continuously while
resharding.

Fault tolerance

All nodes continuously

ping other nodes...

A node marks another

node as possibly failing
when there is a timeout

longer than N seconds.

Every PING and PONG

packet contain a gossip

section: information

about other nodes idle

times, from the point of

view of the sending

node.

Fault tolerance - failing nodes

A guesses B is failing, as the latest PING request timed out.

A will not take any action without any other hint.

C sends a PONG to A, with the gossip section containing
information about B: C also thinks B is failing.

At this point A marks B as failed, and notifies the

information to all the other nodes in the cluster, that will
mark the node as failing.

If B will ever return back, the first time he'll ping any node of

the cluster, it will be notified to shut down ASAP, as

intermitting clients are not good for the clients.

Only way to rejoin a Redis cluster after massive crash

is: redis-trib by hand.

Redis-trib - the Redis Cluster Manager

It is used to setup a new cluster, once you start N blank

nodes.

it is used to check if the cluster is consistent. And to fix it if
the cluster can't continue, as there are hash slots without a

single node.

It is used to add new nodes to the cluster, either as slaves
of an already existing master node, or as blank nodes

where we can re-shard a few hash slots to lower other
nodes load.

It's more complex than this...

there are many details that can't fit a 20 minutes

presentation...

Ping/Pong packets contain enough information for the

cluster to restart after graceful stop. But the sysadmin can
use CLUSTER MEET command to make sure nodes will

engage if IP changed and so forth.

Every node has a unique ID, and a cluster config file.

Everytime the config changes the cluster config file is
saved.

The cluster config file can't be edited by humans.
The node ID never changes for a given node.
Questions?

