Memcached and Redis

14-736 Distributed Systems, Spring 2018
Kesden




Classic Problems

* Web servers query from disk

* Main memory is wasted

Underlying databases queries can be redundant and slow

* Distributing load among Web servers partitions main memory

* Redundant memory cache, not larger memory cache

Dedicated caching can often maintain whole, or large portions of, the
working set, limiting the need to go to disk




, Common Use of Memcached
(But, dedicated servers are also common) s

With Memcached
e —
> web web
server server
When Used Separately

Total Usable Cache size: 64MB

When Logically Combined
Total Usable Cache size: 128MB

https://memcached.org/about

S e e . e ——



Memcached Overview

Distributed hashtable (Key-Value Store)

* Except that “Forgetting is a feature”
* When full - LRU gets dumped

Excellent for high-throughput servers

* Memory is much lower latency than disk

Excellent for high-latency queries

* Caching results can prevent the need to repeat these big units of work




Memcached Architecture

Servers maintain a “key-value” store

Clients know about all servers

* Clients query server by key to get value

Two hash functions
* Key--->Server

* Key-->Associative Array, within server

All clients know everything.




Code, From Wikipedia

function get foo (int userid) ({

data = db_select ("SELECT * FROM users WHERE userid = 2", userid);
return data;

}

function get foo (int userid) {
/* first try the cache */
data = memcached fetch ("userrow:" + userid) ;

if (!data) {
/* not found : request database */
data = db_select ("SELECT * FROM users WHERE userid = 2", userid);

/* then store in cache until next get */
memcached_add ("userrow:" + userid, data) ;

}

return data;




Memcached: No replication

* Designed for volatile data

* Failure: Just go to disk

* Recovery: Just turn back on and wait
* Need redundancy?

® Build above memcached

* Just build multiple instances




REDIS
REmote Dlctionary SErver

* Like Memcached 1in that it provides a key value store

* But much Hehes
. * Lists of strings

* Sets of strings (collections of non-repeating unsorted elements)

* Sorted sets of strings (collections of non-repeating elements ordered by a floating-point
number called score)

* Hash tables where keys and values are strings

* HyperLogl.ogs used for approximated set cardinality size estimation.
* (List from Wikipedia)




REDIS
REmote DIctionary SErver b

* Each data type has associated operations, e.g. get the one in particular
. position in a list, intersect sets, etc.
* Transaction support

* Configurable cache policy

* LRU-ish, Random, keep everything, etc.




REDIS: Persistence

Periodic snapshotting to disk

Append-only log to disk as data is updated

* Compressed in background

Updates to disk every 2 seconds to balance performance and risk

Single process, single thread




REDIS Clustering: Old School

* Old School

* Divide up yourself
* Clients hash
* Clients divide range
* Clients Interact with Proxy which does the same

* Hard to handle queries involving multiple keys




REDIS Clustering: New School

* REDIS Cluster
* Distribute REDIS across nodes
* Multiple key queries okay, so long as all keys in query in same slot
* Hash tags used to force keys into the same slot.

° this{foo}key and that{foo}key in the same slot
° Only {foo} is hashed




