
Cassandra - A Decentralized
Structured Storage System

Avinash Lakshman and Prashant Malik

Facebook

Presented by Gregory Kesden

Agenda

• Outline

• Data Model

• System Architecture

• Implementation

• Experiments

Outline

• Extension of Bigtable with aspects of Dynamo

• Motivations:

– High Availability

– High Write Throughput

– Fail Tolerance

Data Model

• Table is a multi dimensional map indexed by key (row key).

• Columns are grouped into Column Families.

• 2 Types of Column Families

– Simple

– Super (nested Column Families)

• Each Column has

– Name

– Value

– Timestamp

Data Model

keyspace

settings

column family

settings

column

name value timestamp

* Figure taken from Eben Hewitt’s (author of Oreilly’s Cassandra book) slides.

• Partitioning
How data is partitioned across nodes

• Replication
How data is duplicated across nodes

• Cluster Membership
How nodes are added, deleted to the cluster

System Architecture

• Nodes are logically structured in Ring Topology.

• Hashed value of key associated with data partition is used
to assign it to a node in the ring.

• Hashing rounds off after certain value to support ring
structure.

• Lightly loaded nodes moves position to alleviate highly
loaded nodes.

Partitioning

Replication

• Each data item is replicated at N (replication factor) nodes.

• Different Replication Policies

– Rack Unaware – replicate data at N-1 successive nodes after its
coordinator

– Rack Aware – uses ‘Zookeeper’ to choose a leader which tells nodes
the range they are replicas for

– Datacenter Aware – similar to Rack Aware but leader is chosen at
Datacenter level instead of Rack level.

01

1/2

F

E

D

C

B

A N=3

h(key2)

h(key1)

9

Partitioning and Replication

* Figure taken from Avinash Lakshman and Prashant Malik (authors of the paper) slides.

Gossip Protocols

• Network Communication protocols inspired for real life
rumour spreading.

• Periodic, Pairwise, inter-node communication.

• Low frequency communication ensures low cost.

• Random selection of peers.

• Example – Node A wish to search for pattern in data

– Round 1 – Node A searches locally and then gossips with node B.

– Round 2 – Node A,B gossips with C and D.

– Round 3 – Nodes A,B,C and D gossips with 4 other nodes ……

• Round by round doubling makes protocol very robust.

Gossip Protocols

• Variety of Gossip Protocols exists

– Dissemination protocol
• Event Dissemination: multicasts events via gossip. high latency might cause

network strain.

• Background data dissemination: continuous gossip about information
regarding participating nodes

– Anti Entropy protocol
• Used to repair replicated data by comparing and reconciling differences. This

type of protocol is used in Cassandra to repair data in replications.

Cluster Management

• Uses Scuttleback (a Gossip protocol) to manage nodes.

• Uses gossip for node membership and to transmit system
control state.

• Node Fail state is given by variable ‘phi’ which tells how
likely a node might fail (suspicion level) instead of simple
binary value (up/down).

• This type of system is known as Accrual Failure Detector.

Accrual Failure Detector

• If a node is faulty, the suspicion level monotonically
increases with time.

Φ(t)  k as t  k

Where k is a threshold variable (depends on system load)
which tells a node is dead.

• If node is correct, phi will be constant set by application.
Generally

Φ(t) = 0

Bootstrapping and Scaling

• Two ways to add new node
– New node gets assigned a random token which gives its position in

the ring. It gossips its location to rest of the ring

– New node reads its config file to contact it initial contact points.

• New nodes are added manually by administrator via CLI or
Web interface provided by Cassandra.

• Scaling in Cassandra is designed to be easy.

• Lightly loaded nodes can move in the ring to alleviate
heavily loaded nodes.

Local Persistence

• Relies on local file system for data persistency.

• Write operations happens in 2 steps

– Write to commit log in local disk of the node

– Update in-memory data structure.

– Why 2 steps or any preference to order or execution?

• Read operation

– Looks up in-memory ds first before looking up files on disk.

– Uses Bloom Filter (summarization of keys in file store in memory)
to avoid looking up files that do not contain the key.

I/O Architecture

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if
digests differ

Read Operation

* Figure taken from Avinash Lakshman and Prashant Malik (authors of the paper) slides.

Facebook Inbox Search

• Cassandra developed to address this problem.

• 50+TB of user messages data in 150 node cluster on which
Cassandra is tested.

• Search user index of all messages in 2 ways.
– Term search : search by a key word

– Interactions search : search by a user id

Latency Stat Search Interactions Term Search

Min 7.69 ms 7.78 ms

Median 15.69 ms 18.27 ms

Max 26.13 ms 44.41 ms

Comparison with MySQL

• MySQL > 50 GB Data
Writes Average : ~300 ms
Reads Average : ~350 ms

• Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

• Stats provided by Authors using facebook data.

Comparison using YCSB

• Following results taken from ‘Benchmarking Cloud Serving
Systems with YCSB’ by Brain F Cooper et all.

• YCSB is Yahoo Cloud Server Benchmarking framework.

• Comparison between Cassandra, HBase, PNUTS, and
MySQL.

• Cassandra and Hbase have higher read latencies on a read
heavy workload than PNUTS and MySQL, and lower update
latencies on a write heavy workload.

• PNUTS and Cassandra scaled well as the number of servers
and workload increased proportionally.

Comparison using YCSB

• Cassandra, HBase and PNUTS were able to grow elastically
while the workload was executing.

• PNUTS and Cassandra scaled well as the number of

• servers and workload increased proportionally. HBase’s

• performance was more erratic as the system scaled.

Thank You

