Cassandra - A Decentralized
Structured Storage System

Avinash Lakshman and Prashant Malik
Facebook

Presented by Gregory Kesden



 QOutline

* Data Model

* System Architecture
* Implementation

* Experiments



* Extension of Bigtable with aspects of Dynamo
* Motivations:

— High Availability

— High Write Throughput

— Fail Tolerance



Data Model

Table is a multi dimensional map indexed by key (row key).

 Columns are grouped into Column Families.

2 Types of Column Families
— Simple
— Super (nested Column Families)

Each Column has
— Name

— Value

— Timestamp



Data Model

keyspace

column family

(

settings column

settings

> )

o

* Figure taken from Eben Hewitt’s (author of Oreilly’s Cassandra book) slides.



System Architecture

* Partitioning

How data is partitioned across nodes
* Replication

How data is duplicated across nodes

* Cluster Membership

How nodes are added, deleted to the cluster



Partitioning

* Nodes are logically structured in Ring Topology.

 Hashed value of key associated with data partition is used
to assign it to a node in the ring.

* Hashing rounds off after certain value to support ring
structure.

* Lightly loaded nodes moves position to alleviate highly
loaded nodes.



Replication

 Each data item is replicated at N (replication factor) nodes.

* Different Replication Policies

— Rack Unaware - replicate data at N-1 successive nodes after its
coordinator

— Rack Aware — uses ‘Zookeeper’ to choose a leader which tells nodes
the range they are replicas for

— Datacenter Aware — similar to Rack Aware but leader is chosen at
Datacenter level instead of Rack level.



Partitioning and Replication

1/2

* Figure taken from Avinash Lakshman and Prashant Malik (authors of the paper) slides.



Gossip Protocols

Network Communication protocols inspired for real life
rumour spreading.

Periodic, Pairwise, inter-node communication.
Low frequency communication ensures low cost.
Random selection of peers.

Example — Node A wish to search for pattern in data
— Round 1 — Node A searches locally and then gossips with node B.
— Round 2 — Node A,B gossips with C and D.

— Round 3 — Nodes A,B,C and D gossips with 4 other nodes ......

Round by round doubling makes protocol very robust.



Gossip Protocols

e Variety of Gossip Protocols exists

— Dissemination protocol

* Event Dissemination: multicasts events via gossip. high latency might cause
network strain.

* Background data dissemination: continuous gossip about information
regarding participating nodes

— Anti Entropy protocol

* Used to repair replicated data by comparing and reconciling differences. This
type of protocol is used in Cassandra to repair data in replications.



Cluster Management

Uses Scuttleback (a Gossip protocol) to manage nodes.
Uses gossip for node membership and to transmit system
control state.

Node Fail state is given by variable ‘phi’ which tells how
likely a node might fail (suspicion level) instead of simple
binary value (up/down).

This type of system is known as Accrual Failure Detector.



Accrual Failure Detector

* [If a node is faulty, the suspicion level monotonically
increases with time.

D(t) 2 kast =2 k

Where k is a threshold variable (depends on system load)
which tells a node is dead.

* |If node is correct, phi will be constant set by application.
Generally

d(t)=0



Bootstrapping and Scaling

Two ways to add new node

— New node gets assigned a random token which gives its position in
the ring. It gossips its location to rest of the ring

— New node reads its config file to contact it initial contact points.

New nodes are added manually by administrator via CLI or
Web interface provided by Cassandra.

Scaling in Cassandra is designed to be easy.

Lightly loaded nodes can move in the ring to alleviate
heavily loaded nodes.



Local Persistence

* Relies on local file system for data persistency.

* Write operations happens in 2 steps
— Write to commit log in local disk of the node
— Update in-memory data structure.
— Why 2 steps or any preference to order or execution?

* Read operation

— Looks up in-memory ds first before looking up files on disk.

— Uses Bloom Filter (summarization of keys in file store in memory)
to avoid looking up files that do not contain the key.



/O Architecture

Memtable

iy ,.'

Commitiog

o OO0

Fig 2: Cassandra 1/O architecture




Read Operation

Query Result

= " >

é Cassandra Cluster

Closest replica

L 2

Igest Query _
Dig

Result

Digest Respiinse t Response

Replica B Replica C

* Figure taken from Avinash Lakshman and Prashant Malik (authors of the paper) slides.



Facebook Inbox Search

Cassandra developed to address this problem.

50+TB of user messages data in 150 node cluster on which
Cassandra is tested.

Search user index of all messages in 2 ways.
— Term search : search by a key word
— Interactions search : search by a user id

Latency Stat | Search Interactions

Min 7.69 ms 7.78 ms
Median 15.69 ms 18.27 ms
Max 26.13 ms 44.41 ms



Comparison with MySQL

* MySQL > 50 GB Data
Writes Average : 300 ms
Reads Average : ~¥350 ms

e Cassandra > 50 GB Data
Writes Average : 0.12 ms
Reads Average : 15 ms

e Stats provided by Authors using facebook data.



Comparison using YCSB

* Following results taken from ‘Benchmarking Cloud Serving
Systems with YCSB’ by Brain F Cooper et all.

* YCSB is Yahoo Cloud Server Benchmarking framework.

 Comparison between Cassandra, HBase, PNUTS, and
MySQL.

e Cassandra and Hbase have higher read latencies on a read
heavy workload than PNUTS and MySQL, and lower update
latencies on a write heavy workload.

e PNUTS and Cassandra scaled well as the number of servers
and workload increased proportionally.



Comparison using YCSB

e Cassandra, HBase and PNUTS were able to grow elastically
while the workload was executing.

e PNUTS and Cassandra scaled well as the number of
e servers and workload increased proportionally. HBase’s
e performance was more erratic as the system scaled.

70 - - r 80 - - -
Cassandra ——— 0 Cassandra ———
60 ! HBase = o e e 1 g HBage i
Z 50| £ 0 [ PNUTS wwomee |
- = 50 i MvSQOL e
g 40 ¢ g !i ¥SQ
g 30 f = | f
3 e w| p
i | =
% 20 520 __,..ﬁ;',','f;
10 10 | g g
0 ' : : : () Lopenire 4 ¢ : : :
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 B00O 1000012000 14000
Throughput (ops/sec) Throughput (ops/sec)

(a) (b)



Thank You



