1 4-736:
DISTRIBTED SYSTEMS

COORDINATOR SELECTION:
SELECTING A “SPECIAL HOST”

* Given N available hosts, where N isn’t |, how do we pick one for a different role, e.g.

coordinator, front-end server, etc?

* Appoint one: A human simply picks

* Elect one: Participating hosts pick

APPOINTING A COORDINATOR

* A human, e.g. system administrator, picks from available hosts

* Advantages:
¢ Simple
¢ Minimal development time
* Agile

 Disadvantages

* Slow, i.e. human speed

* Requires human to detect failure, understand cause, determine participants, and react.

ELECTING A COORDINATOR

The participants determine the need to pick a (new?) coordinator

Participants “discuss” it among themselves

Participants agree on coordinator

New coordinator takes charge

Advantages:

* Automatic

Disadvantages
* Complexity (partitionings, etc)

* Network traffic (storms)

* Failure mode can be complex, e.g. many coordinators or none

° P I h
BULLY robably the most common

APPROACH * Simplest

(GARCIA-MOLINA '82) * Can lead to storms (We'll see why)

BULLY ALGORITHM

* Assumptions:

¢ All messages are delivered within some T, units of time, called the message propagation time.

* Once a message is received, the reply will be dispatched within some T, units of time, called
the message handling time.

* T,andT are known.

* These are nice, because together they imply that if a response is is not received within

(2*T,, +T,) units of time the process or connection has failed.

* But, of course, in the real world congestion, load, and the indeterminate nature of most

networks mean that a good amount of “slop” needs to be included.

BULLY ALGORITHM

The idea behind the Bully Algorithm is to elect the highest-numbered processor as the coordinator.

* If any host thinks that the coordinator has failed, it tries to elect itself by sending a message to the higher-
numbered processors.
* If any of them answer it loses the election.
* At this point each of these processors will call an election and try to win themselves.
* If none of the higher-ups answer, the processor is the highest numbered processor, so it should be the coordinator.
* So it sends the lower level processors a message declaring itself the coordinator
* After they answer (or the ACK of a reliable protocol), it starts doing its job as coordinator
* E.g. It starts to query participants to find out what they know, then begins providing coordination, etc.
* If a new processor arrives, or recovers from a failure, it gets the state from the current coordinator and then calls

an election

* Or for efficiency, just remains a participant and lets the new coordinator lead, until it fails, etc.

BULLY ALGORITHM

coordinator coopi

BULLY ALGORITHM

Election

190,

Coordinatoc %
"(‘ Coordinator

Election 4
(Never ACKed) coordinator

cooplindtor cooplindtor

INVITATION ALGORITHM:
ASSUMPTIONS AND GOAL

Goal: The Invitation Algorithm provides a protocol for forming groups of available
participants within partitions, and then merging them into larger groups as partitions heal

or failed coordinators are returned to service.

* In many ways, it is like a self-healing, partitionable Bully Algorithm

Assumption: In practice communication failure, high latency, and/or congestion can
partition a network.

Assumption: A collection of participants under the direction of a coordinator, can

perform useful work, even if other such groups exists.

* In other words, partitioned participants can still organize and make progress

INVITATION ALGORITHM:
ASSUMPTIONS AND GOAL

* Groups are named using a group number.

* The group number is unique among all groups, is changed every time a new group is formed, and is never
reused.

* To accomplish this, the group number might be a simple sequence number attached to the processor ID.
* The sequence number component can be incremented each time the processor becomes the coordinator
of a new group.
* Basic idea:
* Partitioned participants (or whole group) elect their own coordinator
» Coordinators "yell out" periodically to participants outside their group asking each if it is a coordinator.

* When a coordinator answers, the coordinators pick one to coordinate, and merge their groups, electing a
new coordinator

¢ Choosing the coordinator is Bully-like, with higher nodes winning.

INVITATION ALGORITHM:
MERGING GROUPS

* One might think that it is acceptable for the coordinator that initiated the merge to be the coordinator
of the new group.

* But it might be the case that two or more coordinators were concurrently looking for other
coordinators and that their messages may arrive in different orders.

* To handle this situation, there should be some priority among the coordinators -- some method to
determine which of the perhaps many coordinators should take over.
* One way of doing this might be to use the processor ID to act as a priority.
* Perhaps higher-numbered processors ignore queries from lower-level processors.

* This would allow lower-level processors to merge the groups with lower priority coordinators during this
operation.

¢ At some later time the higher-level coordinators will each act to discover other coordinators and merge these
lower-priority groups.

* Perhaps receiving the query will prompt the higher-level coordinator to try to merge its group with others
sooner than it otherwise might.

* An alternative would be for a coordinator only to try to merge lower-level coordinators.

INVITATION ALGORITHM:
OPTIONS

* Perhaps higher-numbered processors ignore queries from lower-level processors.

* This would allow lower-level processors to merge the groups with lower priority coordinators during this operation. At some
later time the higher-level coordinators will each act to discover other coordinators and merge these lower-priority groups.

* Perhaps receiving the query will prompt the higher-level coordinator to try to merge its group with others sooner than it
otherwise might.

* An alternative would be for a coordinator only to try to merge lower-level coordinators.

* Or perhaps processors delay some amount of time between the time that they look for other coordinators and the
time that they start to merge these groups.

* This would allow time for a higher-priority coordinator to search for other coordinators (it knows that there is at least one)
and ask them to merge into its group.

* If after such a delay, the old coordinator finds itself in a new group, it stops and accepts its new role as a participant.

* In this case, it might be useful to make the delay inversely proportional to one's priority. For example, there is no reason for the
highest-priority processor to delay. But the lowest priority processor might want to delay for a long time.

INVITATION ALGORITHM

One partition. One group The network is partitioned, but Processor 1 notices the partitioning.
Coordinator = Processor 4 No one notices and declares itself a coordinator.
It calls out and reaches processor 3.

Processor 3 realizes the partitioning The network partition is repaired,. Either processor 3 or processor 4.
and becomes a coodinator. but none of the processors notice discover that the petwork has been

Processor 1 retires from this role. Cepal red.. PEOCCSS_OE 4 respo.nds by
announcing that it is coordinator

and restoring global consistency.

INVITATION ALGORITHM

P! 22 P2 P4
i R | e e T
Initial state : P41
b e R e e R R e R e) SR S SR S e 0% RN |
|_ T . 08 0 g . i g . g . a1 ol | . g g A T 0 s . ol (1 1 o . o 1. piigmss 1 g .y . oo 1. gt | T _[
Network is partitioned : : : . P4.1 :
T . Lo semme | e oo e e smm e smma semmm sem e g e sEmp il
Pl notices and forms B e e e R e g T 3 e AR |
a new group and looks | pj | ALE ym;qa coor'dmator:. : ! . P41,
for other coordinators i Ot me- | I :
(this tips off P3) - * ________________ ! B g s s g, s s, s, o i s]
P3 notices and forms :— - _A_—ge_y—oa acoordinator} | i R e —:
a new group and looks | p1_1._' Ve i P3.1 : : . P41,
for other coordinators 'l______________:* T O — ____:
: 77 |New group! Join P3.2] 1 e S
P3 merges Pl into a [|
new group. l o~ P32 : @ 1[
Il vl g g gl as g d ! T VT ool
(FE DSOS G R S DSOS G DSOS G AJSPRD G AJNPRD GO JHORD . G D G O | S SO [S D S DSOS S DSOS S DSOS | G2 \JSD G SRS , G AJSND G AJRPRD . G PR G JND . G D | i o [i Oy e o s s, I
- . - - I I
The partition is repaired : . P32 P4.1
el e e e e e e e :
P4queriestheotherhostsr___;:’;:’7‘1'_________1\?6 _______ ipator? e] ____:
and discovers P3’s group.: : P3.2 PPl
TN .- S = T D
P4 merges P3 into a new £ T;Ie_w_g_to_u; !_];j;, EM?‘E _______ I;Ie_t,v_g_ro_ui;!_]air_m P42 ~

|
group. P3 in turn tells P1 | . New group! Join P4.2 @ P42 |
to merge !

RING ELECTION

* Another approach, Ring election, is very similar to token ring synchronization, except no

token is used.

* Assumptions:

* We assume that each processor is logically ordered, perhaps by IP address, so that each

processor knows its successor, and its successor's successor, and so on.

¢ Each processor must know the entire logical structure.

RING ELECTION

When a processor discovers that the coordinator has died, it starts circulating an ELECTION message around
the ring.

Each node advances it in logical order, skipping failed nodes as necessary.
Each node adds their node number to the list.

Once this message has made its way all the way around the ring, the message which started it will see its own
number in the list.

It then considers the node with the highest number to be the coordinator, and this messages is circulated.
Each receiving node does the same thing. Once this message has made its way around the ring, it is removed.

If multiple nodes concurrently discover a failed coordinator, each will start an ELECTION.

This isn't a problem, because each election will select the same coordinator.The extra messages are wasted
overhead, while this isn't optimal, it isn't deadly, either.

RING ELECTION

ELECTION: 2,34, 1 COORDINATOR: 2,34, |

"
”
/¢
'
£

ELECTION: 2 1

——
o ~
~

EETHREND ELECTION: 2,3) ° COORDINATOR: 2,3
ELECTION: 224 COORDINATOR: 2,34

