
14-736:
DISTRIBTED SYSTEMS
LECTURE 8 * SPRING 2019 * KESDEN

COORDINATOR SELECTION:
SELECTING A “SPECIAL HOST”

• Given N available hosts, where N isn’t 1, how do we pick one for a different role, e.g.

coordinator, front-end server, etc?

• Appoint one: A human simply picks

• Elect one: Participating hosts pick

APPOINTING A COORDINATOR

• A human, e.g. system administrator, picks from available hosts

• Advantages:

• Simple

• Minimal development time

• Agile

• Disadvantages

• Slow, i.e. human speed

• Requires human to detect failure, understand cause, determine participants, and react.

ELECTING A COORDINATOR

• The participants determine the need to pick a (new?) coordinator

• Participants “discuss” it among themselves

• Participants agree on coordinator

• New coordinator takes charge

• Advantages:

• Automatic

• Disadvantages

• Complexity (partitionings, etc)

• Network traffic (storms)

• Failure mode can be complex, e.g. many coordinators or none

BULLY
APPROACH
(GARCIA-MOLINA '82)

• Probably the most common

• Simplest

• Can lead to storms (We’ll see why)

BULLY ALGORITHM

• Assumptions:

• All messages are delivered within some Tm units of time, called the message propagation time.

• Once a message is received, the reply will be dispatched within some Tp units of time, called

the message handling time.

• Tp and Tm are known.

• These are nice, because together they imply that if a response is is not received within

(2*Tm + Tp) units of time the process or connection has failed.

• But, of course, in the real world congestion, load, and the indeterminate nature of most

networks mean that a good amount of “slop” needs to be included.

BULLY ALGORITHM

The idea behind the Bully Algorithm is to elect the highest-numbered processor as the coordinator.

• If any host thinks that the coordinator has failed, it tries to elect itself by sending a message to the higher-

numbered processors.

• If any of them answer it loses the election.

• At this point each of these processors will call an election and try to win themselves.

• If none of the higher-ups answer, the processor is the highest numbered processor, so it should be the coordinator.

• So it sends the lower level processors a message declaring itself the coordinator

• After they answer (or the ACK of a reliable protocol), it starts doing its job as coordinator

• E.g. It starts to query participants to find out what they know, then begins providing coordination, etc.

• If a new processor arrives, or recovers from a failure, it gets the state from the current coordinator and then calls

an election

• Or, for efficiency, just remains a participant and lets the new coordinator lead, until it fails, etc.

BULLY ALGORITHM

BULLY ALGORITHM

INVITATION ALGORITHM:
ASSUMPTIONS AND GOAL

• Goal: The Invitation Algorithm provides a protocol for forming groups of available

participants within partitions, and then merging them into larger groups as partitions heal

or failed coordinators are returned to service.

• In many ways, it is like a self-healing, partitionable Bully Algorithm

• Assumption: In practice communication failure, high latency, and/or congestion can

partition a network.

• Assumption: A collection of participants under the direction of a coordinator, can

perform useful work, even if other such groups exists.

• In other words, partitioned participants can still organize and make progress

INVITATION ALGORITHM:
ASSUMPTIONS AND GOAL

• Groups are named using a group number.

• The group number is unique among all groups, is changed every time a new group is formed, and is never

reused.

• To accomplish this, the group number might be a simple sequence number attached to the processor ID.

• The sequence number component can be incremented each time the processor becomes the coordinator

of a new group.

• Basic idea:

• Partitioned participants (or whole group) elect their own coordinator

• Coordinators "yell out" periodically to participants outside their group asking each if it is a coordinator.

• When a coordinator answers, the coordinators pick one to coordinate, and merge their groups, electing a

new coordinator

• Choosing the coordinator is Bully-like, with higher nodes winning.

INVITATION ALGORITHM:
MERGING GROUPS

• One might think that it is acceptable for the coordinator that initiated the merge to be the coordinator

of the new group.

• But it might be the case that two or more coordinators were concurrently looking for other

coordinators and that their messages may arrive in different orders.

• To handle this situation, there should be some priority among the coordinators -- some method to

determine which of the perhaps many coordinators should take over.

• One way of doing this might be to use the processor ID to act as a priority.

• Perhaps higher-numbered processors ignore queries from lower-level processors.

• This would allow lower-level processors to merge the groups with lower priority coordinators during this

operation.

• At some later time the higher-level coordinators will each act to discover other coordinators and merge these

lower-priority groups.

• Perhaps receiving the query will prompt the higher-level coordinator to try to merge its group with others

sooner than it otherwise might.

• An alternative would be for a coordinator only to try to merge lower-level coordinators.

INVITATION ALGORITHM:
OPTIONS

• Perhaps higher-numbered processors ignore queries from lower-level processors.

• This would allow lower-level processors to merge the groups with lower priority coordinators during this operation. At some

later time the higher-level coordinators will each act to discover other coordinators and merge these lower-priority groups.

• Perhaps receiving the query will prompt the higher-level coordinator to try to merge its group with others sooner than it

otherwise might.

• An alternative would be for a coordinator only to try to merge lower-level coordinators.

• Or perhaps processors delay some amount of time between the time that they look for other coordinators and the

time that they start to merge these groups.

• This would allow time for a higher-priority coordinator to search for other coordinators (it knows that there is at least one)

and ask them to merge into its group.

• If after such a delay, the old coordinator finds itself in a new group, it stops and accepts its new role as a participant.

• In this case, it might be useful to make the delay inversely proportional to one's priority. For example, there is no reason for the

highest-priority processor to delay. But the lowest priority processor might want to delay for a long time.

INVITATION ALGORITHM

INVITATION ALGORITHM

RING ELECTION

• Another approach, Ring election, is very similar to token ring synchronization, except no

token is used.

• Assumptions:

• We assume that each processor is logically ordered, perhaps by IP address, so that each

processor knows its successor, and its successor's successor, and so on.

• Each processor must know the entire logical structure.

RING ELECTION

• When a processor discovers that the coordinator has died, it starts circulating an ELECTION message around

the ring.

• Each node advances it in logical order, skipping failed nodes as necessary.

• Each node adds their node number to the list.

• Once this message has made its way all the way around the ring, the message which started it will see its own

number in the list.

• It then considers the node with the highest number to be the coordinator, and this messages is circulated.

• Each receiving node does the same thing. Once this message has made its way around the ring, it is removed.

• If multiple nodes concurrently discover a failed coordinator, each will start an ELECTION.

• This isn't a problem, because each election will select the same coordinator. The extra messages are wasted

overhead, while this isn't optimal, it isn't deadly, either.

RING ELECTION

