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DISTRIBUTED OBJECTS

Maintain an understanding of the identities of stateful objects

Invoke methods upon these remotely accessible objects

Obtain and pass around references to these remotely accessible objects

Note: Objects versus Classes

* There can be many instances, some remotely accessible, some note
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* Common organization of a remote object with client-side proxy.




JAVA IS MY FAVORITE RMI EXAMPLE:
SIMPLE SOLUTIONS, EASY USE

* Interfaces provide common reference type for proxy and remote instances

* Serializable vs Remote interface
* Remote: Send Remote-Object-Reference (ROR) and localize to proxy reference

* Does not implement Remote: Needs to be Serializable (and not Remote):

* Send copy and deserialize

* Neither: Error

* Registry: Trade name for ROR




JAVA RMI

* Original version:

* “rmic” generated proxy and skeleton classes from the base .class file

* Step to simplicity:
* The skeletons were really formulaic. They all had the same code. All they did was invoke a local method
* Replace with a dispatcher that parses the incoming invocation and dispatches it locally

* Proxies are formulaic. Interfaces provide all the methods, arguments, etc. ROR provides server

information

* Automatically generate them dynamically.

* No more need for rmic. All dynamic.




JAVA RMI EXAMPLE: INTERFACE

HelloInterface.java:

interface HelloInterface extends Remote {
public String sayHello(String name)
throws RemoteException;

}




JAVA RMI EXAMPLE: SERVER

Hello.java

class Hello extends UnicastRemoteObject implements Hellolnterface {
private static final String serverName = "hello";

public Hello() throws RemoteException { }

public String sayHello(String name) throws RemoteException {
return "Hello World! Hello " + name;

}

public static void main (String [Jargs) {
try {
Hello server = new Hello();
Naming.rebind (serverName, server);
System.out.printin ("Hello Server ready");
} catch (Exception e) {
e.printStackTrace();

}




JAVA RMI EXAMPLE: CLIENT

HelloClient.java

class HelloClient {

static void main (String [Jargs) {

try {
String HelloServerURL = args[1];

System.setSecurityManager (new RMISecurityManager());

Hellolnterface hello = (Hellolnterface) Naming.lookup(HelloServerURL);

String theGreeting = hello.sayHello (args[0]); System.out.println (theGreeting);
} catch (Exception e) {
e.printStackTrace();




