14-736 DISTRIBUTED
SYSTEMS

RMI (KESDEN, SPRING 2019)

DISTRIBUTED OBJECTS

Maintain an understanding of the identities of stateful objects

Invoke methods upon these remotely accessible objects

Obtain and pass around references to these remotely accessible objects

Note: Objects versus Classes

* There can be many instances, some remotely accessible, some note

- DISTRIBUTED OBJECTS

Client machine Server machine
A Object
Client Server A
‘ e State
Same
Client interface D ‘:l ‘:l“ Method
|- as object

invokes

a method i / Skeleton /J’* >

’_|:|7 vokes ——11 [Interface
Proxy e e e ‘ Skeleton

at object A
Client OS Server OS

o /

Network \

Marshalled invocation
Is passed across network

* Common organization of a remote object with client-side proxy.

JAVA IS MY FAVORITE RMI EXAMPLE:
SIMPLE SOLUTIONS, EASY USE

* Interfaces provide common reference type for proxy and remote instances

* Serializable vs Remote interface
* Remote: Send Remote-Object-Reference (ROR) and localize to proxy reference

* Does not implement Remote: Needs to be Serializable (and not Remote):

* Send copy and deserialize

* Neither: Error

* Registry: Trade name for ROR

JAVA RMI

* Original version:

* “rmic” generated proxy and skeleton classes from the base .class file

* Step to simplicity:
* The skeletons were really formulaic. They all had the same code. All they did was invoke a local method
* Replace with a dispatcher that parses the incoming invocation and dispatches it locally

* Proxies are formulaic. Interfaces provide all the methods, arguments, etc. ROR provides server

information

* Automatically generate them dynamically.

* No more need for rmic. All dynamic.

JAVA RMI EXAMPLE: INTERFACE

HelloInterface.java:

interface HelloInterface extends Remote {
public String sayHello(String name)
throws RemoteException;

}

JAVA RMI EXAMPLE: SERVER

Hello.java

class Hello extends UnicastRemoteObject implements Hellolnterface {
private static final String serverName = "hello";

public Hello() throws RemoteException { }

public String sayHello(String name) throws RemoteException {
return "Hello World! Hello " + name;

}

public static void main (String [Jargs) {
try {
Hello server = new Hello();
Naming.rebind (serverName, server);
System.out.printin ("Hello Server ready");
} catch (Exception e) {
e.printStackTrace();

}

JAVA RMI EXAMPLE: CLIENT

HelloClient.java

class HelloClient {

static void main (String [Jargs) {

try {
String HelloServerURL = args[1];

System.setSecurityManager (new RMISecurityManager());

Hellolnterface hello = (Hellolnterface) Naming.lookup(HelloServerURL);

String theGreeting = hello.sayHello (args[0]); System.out.println (theGreeting);
} catch (Exception e) {
e.printStackTrace();

