
VIRTUAL MACHINES

LECTURE 24 * 14-736 (DISTRIBUTED SYSTEMS) * SPRING 2019

WHAT IS VIRTUALIZATION?

“In computing, virtualization refers to the act of creating a virtual (rather than actual)

version of something, including virtual computer hardware platforms, storage devices, and

computer network resources.”

-- https://en.wikipedia.org/wiki/Virtualization

WHAT, THEN, IS A VIRTUAL MACHINE?

• A virtual , rather than actual machine

• Okay, so what does that mean?

• Something with the “virtues” or good parts of a machines

• Without the realities of being that machine!

• A software program, known as a guest, that runs on one computer, known as a host, that

can run software as if it (the program) were an actual computer, often of a different type.

WHY USE VIRTUAL MACHINES?

• Share resources among many uses

• One physical machine can host many guests

• Decouple the physical environment from the presented environment

• Run Atari 2600 games on Macs or Windows PCs

• Run Android and phone software on an Mac or Windows PC

• Deliver several different Linux environments (different OS versions, libraries, etc) from one Linux host.

• Provide for protection

• Different VMs for different domains, applications, users, etc.

• Provide for elasticity

• Launch and Recall VMs as needed to meet demand.

• Provide a unit of accounting, e.g. AWS.

• Provide a mechanism for migration, checkpointing, etc

• Recovery, maintenance

WHY NOT USE VIRTUAL MACHINES?

• Complexity

• There is overhead in maintaining multiple environments

• Most of us just run native on our phones, laptops, etc.

• Efficiency

• VMs introduce overhead, which can reduce increase costs and latency

• Of course, sharing efficiently can lower costs and provide better efficiency for the same cost, too.

• Performance Isolation

• Hard to manage well with sharing, but there are some tools.

• Protection

• VMs mostly provide a better model for this and improve it

• But, any sharing presents risks that real-world physical separation does not.

WHY CRITICAL IN CLOUD ENVIRONMENTS?

• Sharing of resources

• Improve utilization

• Fungibility

• Decouple guest hardware and software configuration from configuration

• Isolation

• Pretty well defined protection model

• Elasticity

• Easy to create and destroy

• Robustness

• Model for checkpointing, recovering, migrating

• Metering

• Can define to provide various qualities of service, e.g. processor speeds, memory models, networking capacities, etc.

• All, for example, by time-sharing or space-sharing capabilities of host.

VIRTUALIZED APPLICATIONS

• In may ways, the ideal model

• Each app runs in its own VM

• It has its own environment, which can be unique from the rest.

• May include a few related apps

• Has everything it needs packaged

• But, can mean a lot of overhead if many apps sharing the same host

• We’ll talk about containers soon

TYPES OF VIRTUAL MACHINES

• Full virtualization

• Virtual machines runs entirely as a program in guest OS without any special support from

guest OS

• Nice in that it requires no specialized support

• Not nice in that it has to grind through virtualizing expensive operations that can be done

faster in host.

• Paravirtualization

• Host OS modified to provide an API to enable VM to request the host to perform operations

on behalf of the guest.

• Makes operations that are inefficient to virtualize efficient

• Requires a modified guest

• May complicate protection and/or isolation models, etc.

HARDWARE SUPPORT

• Can eliminate many of the pain points

• Traps

• Hardware access, e.g. for I/O (Interrupts, DMA, etc)

• Supervisor vs user mode

• Consider what happens if a guest can run in supervisor mode

• Consider what happen if a guest OS cannot run in supervisor mode

• Etc

• Very powerful when combined with paravirtualization

• Ties implementation to specific, evolving hardware support.

RELATED TECHNOLOGIES

• Simulators

• Simulates internal mechanisms as well as emulating behaviors, even when dramatically

inefficient and unnecessary.

• Mostly used for research, debugging with full transparency, etc

• Far too slow for production use

• Containers (“OS-level virtualization”)

• Share not only hardware, but also OS components (Limits presented OS)

• Improves efficiency

• Complicates protection and isolation model

• Examples: Docker, BSD Jails, etc.

• More soon

VIRTUAL MACHINE MONITOR (VMM)
A.K.A. HYPERVISOR

• Manages virtual machines

• Creates

• Destroys

• Suspends

• Resumes

• Migrates

• Etc.

• Typically manages all VMs on one host

• Name derived from supervisor, an old-school synonym for a running OS (kernel) in its role

managing processes and resources

• The hypervisor is, in some ways, a supervisor for the guest supervisors. Hyper sounding bigger than

super, and all

TYPES OF HYPERVISORS

• Native Hypervisor, a.k.a. Bare-metal Hypervisor

• Runs on guest hardware instead of conventional operating system

• Old school IBM stuff and Microsoft Hyper-V (Based on trimmed down Windows) are classic examples

• Hosted Hypervisor

• Runs as user software within a conventional operating system environment

• VMware is classic example

• Reality isn’t always so clear

• What do you call a hosted hypervisor running on an OS that is hosting nothing but that hypervisor and the VMs

it manages?

• Does it matter if paravirtualization blends the line between OS, hypervisor, and VM?

• KVM is classic example

• Obviously, the tighter the integration, the more efficient things likely will be.

CONTAINERS
A.K.A. OS VIRTUALIZATION

• Maintain one host OS

• Guest OS is the same type

• Share it for efficiency

• Isolate guests within host OS

• For protection purposes

• For environment purpose (Libraries, file system, users, etc)

• Maybe for resource management purposes

• More efficient model

• More sharing = Less overhead

CONTAINERS
A.K.A. OS VIRTUALIZATION, CONT

• Built using existing OS mechanism

• In many ways co-developed with those mechanisms

• But, weaker in some ways

• Need to present same guest OS

• Performance/Security model harder to understand

• Limits to ability to control performance impact

• Model is “share first, isolate second”

• Careful! Careful!

CONTAINER BUILDING BLOCKS:
CHROOT

• chroot = change root

• Uses any directory within the file system’s tree as the root for a process and its

descendants.

• It can’t get out of this box in the file system

• Old school use: chroot a Web server.

• Breaking the Web server doesn’t expose host file system

• But, only isolates the file system

CONTAINER BUILDING BLOCKS:
LINUX NAMESPACES

• Creates a partitioned view of certain linux kernel resources such that only certain processes can see certain resources

• Types of namespaces:

• Mount (mnt)

• Process ID (pid)

• Network

• Interprocess Communication (ipc)

• Unix Time Share, a.k.a. uname (uts)

• User ID (user)

• Control group (cgroup)

• Basic model is that once resources are isolated into a namespace, only the original processes and their descendants can’t get

out of that view.

• Now we can partition the view of the file system – and kernel resources

CONTAINER BUILDING BLOCKS:
MOUNT (MNT) NAMESPACE

• Mount points are the points where one file system is grafted onto another file system.

• For example

• /afs is the mount point where the AFS distributed file system is graphed into the visible file system.

• /proc is the mount point where the kernel’s virtual file system is mounted into the local file system

• The mnt namespace allows mounts to be viewed within certain namespaces, but not others

• Subtrees can also be shared among namespaces.

• This allows changes to mounts within them to be seen across the namespace.

• So, now we can not only limit what portion of a file system a process can see, but we can

build it up by layering mounts on top of it – and deleting them.

• And define them hierarchically (take X, add Y to form Z; take Z and add A and subtract B, etc)

CONTAINER BUILDING BLOCKS:
PROCESS ID (PID) NAMESPACE

• Basically like a “chroot” for the pid tree

• A new namespace is created and a process is forked into it using a more parameterizable

version of fork() called clone()

• This process now has pid=1 in this namespace.

• Only its descendants are visible within the name space

• Careful! Careful!

• Containers are a broken first, fixed from there model

• Most tools get their process information from /proc, which is in the file system

• So, unless this, too is “fixed”, top, ps, etc, will all still show global processes (oops)

CONTAINER BUILDING BLOCKS:
NETWORK (NET) NAMESPACE

• Network namespaces virtualize the network stack. On creation a network namespace contains only a

loopback interface.

• Each network interface (physical or virtual) is present in exactly 1 namespace and can be moved

between namespaces.

• Virtual network interfaces can share physical ones, thereby allowing a physical network interface to be shared.

(Kesden note)

• Each namespace will have a private set of IP addresses, its own routing table, socket listing, connection

tracking table, firewall, and other network-related resources.

• Destroying a network namespace destroys any virtual interfaces within it and moves any physical

interfaces within it back to the initial network namespace.

-- https://en.wikipedia.org/wiki/Linux_namespaces#Mount_(mnt)

CONTAINER BUILDING BLOCKS:
INTER-PROCESS COMMUNICATION (IPC) NAMESPACE

• Inter-process communication makes use of shared memory to allow processes to

communicate with each other

• Pages of shared memory get mapped into multiple processes’ virtual memory

• Libraries make uses of this shared memory to provide structured communication

• Shared memory, mailboxes, etc.

• Synchronization primitives may also make use of it

• Semaphores, mutexes, etc.

• This has an obvious impact upon isolation.

• IPC Namespaces partition IPC so it can’t be used across name spaces

CONTAINER BUILDING BLOCKS:
UNIX TIME SHARE, A.K.A. UNAME (UTS) NAMESPACE

• UTS is an old school name for what is returned by “uname -a”

• Basically, this namespace allows processes to have different hostnames and domain

names.

CONTAINER BUILDING BLOCKS:
USERID (UID) NAMESPACE

• You’ve guessed this one

• It lets different name spaces have different userids, including their mappings

• Including uid(#) → userid(string) mappings

• So, both uids and userids can e reused across name spaces.

• root and uid=0 can both be reused within each user space

• The root user within a user space has the ability to do root things with any protected

resources owned by that namespace or any of its descendants.

• Recall, for example, that network interfaces are owned by some namespace and can be moved

among them – but not shared among them.

CONTAINER BUILDING BLOCKS:
CONTROL GROUP (CGROUP) NAMESPACE

• Control groups (cgroups) are basically a mechanism for the hierarchical grouping of

processes for resource management

• Resource management is applied to a group – including its descendants

• Many different resources can be managed:

• CPU, Memory, disk I/O. Network I/O, etc

• Monitoring and accounting can be done on a per-group basis.

• Some process management can be done on a per cgroup basis

• Freezing, Resuming, Killing, etc.

UNION FILE SYSTEM (UNIONFS)

• Ability to mount one file system layered over another

• See lower level file systems through upper level file systems to the extent non-conflicting.

• But, upper level file systems hide conflicting things in lower layers

• Makes it easy to define one file system by specializing another

• In some sense it enables inheritance for a file system .

CONTAINER BUILDING BLOCKS:
CONTAINER LIBRARIES

• Libraries may package functionality into an interface to support containerizing

environments:

• Examples include libcontainer, LXC, libvirt, &c e

• These are currently not generally portable

• But, one can imagine a standardized interface working across operating systems with rich

enough features

• Wouldn’t that be nice ☺

DOCKER

• Probably the best known Linux container

solution including:

• Network, data volumes, images, and

containers

• Onion:

• Daemon manages the containers

• API provides for programmatic control

of the daemon

• Command-line interface (CLI) is built

upon the API and provides command line

tools
https://docs.docker.com/engine/docker-overview/#docker-engine

DOCKER ARCHITECTURE/ECOSYSTEM

https://docs.docker.com/engine/docker-overview/#docker-architecture

CONTAINERS + VMS

• In some ways these are competing technologies

• Clear protection model and independence from host favors VMs

• Efficiency, tuning a similar base environment, and reasonable isolation favors Containers

• But, they are also cooperative technologies

• VMs can contain containers

• Common model:

• VM provides hardware independence (for sharing, fungibility, efficiency, isolation, robustness, etc)

• Containers provide application environment (for deployability and further management)

