VIRTUAL MACHINES

LECTURE 24 * 14-736 (DISTRIBUTED SYSTEMS) * SPRING 2019

WHAT ISVIRTUALIZATION?

“In computing, virtualization refers to the act of creating a virtual (rather than actual)
version of something, including virtual computer hardware platforms, storage devices, and
computer network resources.”

-- https://en.wikipedia.org/wiki/Virtualization

WHAT, THEN, IS AVIRTUAL MACHINE!?

* A virtual , rather than actual machine
* Okay, so what does that mean?
¢ Something with the “virtues” or good parts of a machines

* Without the realities of being that machine!

* A software program, known as a guest, that runs on one computer, known as a host, that

can run software as if it (the program) were an actual computer, often of a different type.

WHY USE VIRTUAL MACHINES!?

* Share resources among many uses

* One physical machine can host many guests

* Decouple the physical environment from the presented environment
* Run Atari 2600 games on Macs or Windows PCs
* Run Android and phone software on an Mac or Windows PC

* Deliver several different Linux environments (different OS versions, libraries, etc) from one Linux host.

* Provide for protection

* DifferentVMs for different domains, applications, users, etc.

* Provide for elasticity
* Launch and Recall VMs as needed to meet demand.

* Provide a unit of accounting, e.g. AVVS.

* Provide a mechanism for migration, checkpointing, etc

* Recovery, maintenance

WHY NOT USEVIRTUAL MACHINES?

Complexity
* There is overhead in maintaining multiple environments

* Most of us just run native on our phones, laptops, etc.

Efficiency
* VMs introduce overhead, which can reduce increase costs and latency

* Of course, sharing efficiently can lower costs and provide better efficiency for the same cost, too.

Performance Isolation

* Hard to manage well with sharing, but there are some tools.

Protection

* VMs mostly provide a better model for this and improve it

* But, any sharing presents risks that real-world physical separation does not.

WHY CRITICAL IN CLOUD ENVIRONMENTS?

* Sharing of resources
* Improve utilization
* Fungibility
* Decouple guest hardware and software configuration from configuration

* Isolation

* Pretty well defined protection model

* Elasticity

¢ Easy to create and destroy

* Robustness

¢ Model for checkpointing, recovering, migrating

* Metering

* Can define to provide various qualities of service, e.g. processor speeds, memory models, networking capacities, etc.

¢ All, for example, by time-sharing or space-sharing capabilities of host.

VIRTUALIZED APPLICATIONS

* In may ways, the ideal model

* Each app runs in its own VM

* It has its own environment, which can be unique from the rest.
* May include a few related apps

* Has everything it needs packaged

* But, can mean a lot of overhead if many apps sharing the same host

* We'll talk about containers soon

TYPES OF VIRTUAL MACHINES

* Full virtualization

* Virtual machines runs entirely as a program in guest OS without any special support from
guest OS

* Nice in that it requires no specialized support

* Not nice in that it has to grind through virtualizing expensive operations that can be done
faster in host.

* Paravirtualization

* Host OS modified to provide an API to enable VM to request the host to perform operations
on behalf of the guest.

* Makes operations that are inefficient to virtualize efficient

* Requires a modified guest

* May complicate protection and/or isolation models, etc.

HARDWARE SUPPORT

* Can eliminate many of the pain points
* Traps
* Hardware access, e.g. for /O (Interrupts, DMA, etc)

 Supervisor vs user mode
* Consider what happens if a guest can run in supervisor mode

* Consider what happen if a guest OS cannot run in supervisor mode

* Etc

* Very powerful when combined with paravirtualization

* Ties implementation to specific, evolving hardware support.

RELATED TECHNOLOGIES

* Simulators

* Simulates internal mechanisms as well as emulating behaviors, even when dramatically
inefficient and unnecessary.

* Mostly used for research, debugging with full transparency, etc

* Far too slow for production use

* Containers (“OS-level virtualization”)
 Share not only hardware, but also OS components (Limits presented OS)
* Improves efficiency
* Complicates protection and isolation model

* Examples: Docker, BSD]Jails, etc.

* More soon

VIRTUAL MACHINE MONITOR (VMM)
A.K.A. HYPERVISOR

* Manages virtual machines
* Creates
* Destroys
* Suspends
* Resumes
* Migrates
* Etc.

 Typically manages all VMs on one host

* Name derived from supervisor, an old-school synonym for a running OS (kernel) in its role
managing processes and resources

* The hypervisor is, in some ways, a supervisor for the guest supervisors. Hyper sounding bigger than
super; and all

TYPES OF HYPERVISORS

Native Hypervisor, a.k.a. Bare-metal Hypervisor
* Runs on guest hardware instead of conventional operating system

* Old school IBM stuff and Microsoft Hyper-V (Based on trimmed down Windows) are classic examples

Hosted Hypervisor
* Runs as user software within a conventional operating system environment

* VMware is classic example

Reality isn’t always so clear

* What do you call a hosted hypervisor running on an OS that is hosting nothing but that hypervisor and the VMs
it manages?

* Does it matter if paravirtualization blends the line between OS, hypervisor,and VM?

¢ KVM is classic example

Obviously, the tighter the integration, the more efficient things likely will be.

CONTAINERS
A.K.A. OSVIRTUALIZATION

* Maintain one host OS
* Guest OS is the same type

* Share it for efficiency

* Isolate guests within host OS
* For protection purposes
* For environment purpose (Libraries, file system, users, etc)

* Maybe for resource management purposes

* More efficient model

* More sharing = Less overhead

CONTAINERS
A.K.A. OS VIRTUALIZATION, cont

* Built using existing OS mechanism

* In many ways co-developed with those mechanisms

* But, weaker in some ways
* Need to present same guest OS
* Performance/Security model harder to understand

* Limits to ability to control performance impact

* Model is “share first, isolate second”

e Careful! Careful!

CONTAINER BUILDING BLOCKS:
CHROOT

* chroot = change root

* Uses any directory within the file system’s tree as the root for a process and its

descendants.

* It can’t get out of this box in the file system

* Old school use: chroot a VWeb server.

* Breaking the Web server doesn’t expose host file system

* But, only isolates the file system

CONTAINER BUILDING BLOCKS:
LINUX NAMESPACES

* Creates a partitioned view of certain linux kernel resources such that only certain processes can see certain resources

* Types of namespaces:
* Mount (mnt)
* Process ID (pid)
* Network
* Interprocess Communication (ipc)
* Unix Time Share, a.k.a. uname (uts)
¢ User ID (user)
¢ Control group (cgroup)

* Basic model is that once resources are isolated into a namespace, only the original processes and their descendants can’t get
out of that view.

* Now we can partition the view of the file system — and kernel resources

CONTAINER BUILDING BLOCKS:
MOUNT (MNT) NAMESPACE

* Mount points are the points where one file system is grafted onto another file system.

For example
* /afs is the mount point where the AFS distributed file system is graphed into the visible file system.

* [proc is the mount point where the kernel’s virtual file system is mounted into the local file system

The mnt namespace allows mounts to be viewed within certain namespaces, but not others

* Subtrees can also be shared among namespaces.

* This allows changes to mounts within them to be seen across the namespace.

* So, now we can not only limit what portion of a file system a process can see, but we can

build it up by layering mounts on top of it — and deleting them.

* And define them hierarchically (take X, add Y to form Z; take Z and add A and subtract B, etc)

CONTAINER BUILDING BLOCKS:
PROCESS ID (PID) NAMESPACE

* Basically like a “chroot” for the pid tree

* A new namespace is created and a process is forked into it using a more parameterizable
version of fork() called clone()

* This process now has pid=1 in this namespace.

* Only its descendants are visible within the name space

e Careful! Careful!

* Containers are a broken first, fixed from there model

* Most tools get their process information from /proc, which is in the file system

* So, unless this, too is “fixed”, top, ps, etc, will all still show global processes (oops)

CONTAINER BUILDING BLOCKS:
NETWORK (NET) NAMESPACE

Network namespaces virtualize the network stack. On creation a network namespace contains only a
loopback interface.

Each network interface (physical or virtual) is present in exactly | namespace and can be moved
between namespaces.
* Virtual network interfaces can share physical ones, thereby allowing a physical network interface to be shared.
(Kesden note)

Each namespace will have a private set of IP addresses, its own routing table, socket listing, connection
tracking table, firewall, and other network-related resources.

Destroying a network namespace destroys any virtual interfaces within it and moves any physical
interfaces within it back to the initial network namespace.

-- https://en.wikipedia.org/wiki/Linux_namespaces#Mount_(mnt)

CONTAINER BUILDING BLOCKS:
INTER-PROCESS COMMUNICATION (IPC) NAMESPACE

* Inter-process communication makes use of shared memory to allow processes to
communicate with each other
* Pages of shared memory get mapped into multiple processes’ virtual memory
* Libraries make uses of this shared memory to provide structured communication
* Shared memory, mailboxes, etc.
* Synchronization primitives may also make use of it

* Semaphores, mutexes, etc.

* This has an obvious impact upon isolation.

* |PC Namespaces partition IPC so it can’t be used across name spaces

CONTAINER BUILDING BLOCKS:
UNIXTIME SHARE,A.K.A. UNAME (UTS) NAMESPACE

e UTS is an old school name for what is returned by “uname -a”

* Basically, this namespace allows processes to have different hostnames and domain

names.

CONTAINER BUILDING BLOCKS:
USERID (UID) NAMESPACE

* You’ve guessed this one

* It lets different name spaces have different userids, including their mappings
* Including uid(#) = userid(string) mappings
* So, both uids and userids can e reused across name spaces.

* root and uid=0 can both be reused within each user space

* The root user within a user space has the ability to do root things with any protected

resources owned by that namespace or any of its descendants.

* Recall, for example, that network interfaces are owned by some namespace and can be moved

among them — but not shared among them.

CONTAINER BUILDING BLOCKS:
CONTROL GROUP (CGROUP) NAMESPACE

* Control groups (cgroups) are basically a mechanism for the hierarchical grouping of
processes for resource management

* Resource management is applied to a group — including its descendants

* Many different resources can be managed:

* CPU, Memory, disk I/O. Network I/O, etc
* Monitoring and accounting can be done on a per-group basis.

* Some process management can be done on a per cgroup basis

* Freezing, Resuming, Killing, etc.

UNION FILE SYSTEM (UNIONFS)

Ability to mount one file system layered over another

See lower level file systems through upper level file systems to the extent non-conflicting.

But, upper level file systems hide conflicting things in lower layers

Makes it easy to define one file system by specializing another

In some sense it enables inheritance for a file system .

CONTAINER BUILDING BLOCKS:
CONTAINER LIBRARIES

* Libraries may package functionality into an interface to support containerizing

environments:

* Examples include libcontainer, LXC, libvirt, &c e

* These are currently not generally portable

* But, one can imagine a standardized interface working across operating systems with rich

enough features

* Wouldn’t that be nice ©

DOCKER

* Probably the best known Linux container
solution including:

* Network, data volumes, images, and
containers

* Onion:
¢ Daemon manages the containers

* API provides for programmatic control
of the daemon

¢ Command-line interface (CLI) is built
upon the APl and provides command line
tools

container image

|
manages manages —J

https://docs.docker.com/engine/dc

network data volumes
| REST API ' J
manages server manages

docker daemon

Ker-overview/#docker-engine

DOCKER ARCHITECTURE/ECOSYSTEM

Client) [DOCKER_HOST) M

docker build ,,_).| Docker daemon o I A
/ < .. ~ ey
docker pull B | A b <
r - - E “ ~
. _ \
docker run —7 P "é NGinNX

https://docs.docker.com/engine/docker-overviewr#docker-architecture

CONTAINERS +VMS

* |In some ways these are competing technologies
* Clear protection model and independence from host favors VMs

¢ Efficiency, tuning a similar base environment, and reasonable isolation favors Containers

* But, they are also cooperative technologies
* VMs can contain containers

e Common model:

* VM provides hardware independence (for sharing, fungibility, efficiency, isolation, robustness, etc)

* Containers provide application environment (for deployability and further management)

