
14-736: Distributed Systems

Lecture 23: Key Distribution and Management

Thanks to the many, many people who have contributed various

slides to this deck over the years.

2

Key Distribution

• Have network with n entities

• Add one more
• Must generate n new keys

• Each other entity must securely get its new key

• Big headache managing n2 keys!

• One solution: use a central keyserver
• Needs n secret keys between entities and keyserver

• Generates session keys as needed

• Downsides
• Only scales to single organization level

• Single point of failure

3

Symmetric Key Distribution

• How does Andrew do this?

Andrew Uses Kerberos, which relies on a

Key Distribution Center (KDC) to establish

shared symmetric keys.

4

Key Distribution Center (KDC)

• Alice, Bob need shared symmetric key.

• KDC: server shares different secret key with each

registered user (many users)

• Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for

communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

5

Key Distribution Center (KDC)

Alice

knows

R1

Bob knows to

use R1 to

communicate

with Alice

Alice and Bob communicate: using R1 as

session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared

symmetric secret key to communicate with each other?

KDC

generates

R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

6

How Useful is a KDC?

• Must always be online to support secure

communication

• KDC can expose our session keys to others!

• Centralized trust and point of failure.

In practice, the KDC model is mostly used within

single organizations (e.g. Kerberos) but not more

widely.

7

Kerberos

• Trivia
• Developed in 80’s by MIT’s Project Athena

• Used on all Andrew machines

• Mythic three-headed dog guarding the entrance to Hades

• Uses DES, 3DES

• Key Distribution Center (KDC)
• Central keyserver for a Kerberos domain

• Authentication Service (AS)
• Database of all master keys for the domain

• Users’ master keys are derived from their passwords

• Generates ticket-granting tickets (TGTs)

• Ticket Granting Service (TGS)
• Generates tickets for communication between principals

• “slaves” (read only mirrors) add reliability

• “cross-realm” keys obtain tickets in others Kerberos domains

8

Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ

9

(1) AS_REQUEST

• The first step in accessing a service that requires

Kerberos authentication is to obtain a ticket-

granting ticket.

• To do this, the client sends a plain-text message

to the AS:

• <client id, KDC id, requested ticket expiration, nonce1>

10

Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ

11

(2) AS_REPLY

• <{Kc,TGS, none1}Kc, {ticketc,tgs}KTGS>

• Notice the reply contains the following:

• The nonce, to prevent replays

• The new session key

• A ticket that the client can’t read or alter

• A ticket:
• ticketx,y = {x, y, beginning valid time, expiration time, Kx,y}

12

Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ

13

(3) TGS_REQUEST

• The TGS request asks the TGS for a ticket to

communicate with a a particular service.

• <{authc} Kc, TGS
, {ticketc, TGS}KTGS, service, nonce2>

•

• <{authc} is known as an authenticator it contains the name

of the client and a timestamp for freshness
.

14

Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ

15

(4) TGS_REPLY

• <{Kc,service, nonce2}K c, TGS, {ticketc, service }Kservice >

• Notice again that the client can’t read or alter the

ticket

• Notice again the use of the session key and

nonce between the client and the TGS

16

(5) APP_REPLY

• <{authc}Kc,service
, {ticketc,service}Kservice, request, nonce3>

• Notice again the use of the session key as well as

the protected ticket.

17

Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ

18

(6) APP_REPLY

• <{nonce3}Kc,service, response>

• Because of the use of the encrypted nonce, the

client is assured the reply came form the

application, not an imposter.

19

Using Kerberos

• kinit
• Get your TGT

• Creates file, usually stored in /tmp

• klist
• View your current Kerberos tickets

• kdestory
• End session, destroy all tickets

• kpasswd
• Changes your master key stored by the AS

• “Kerberized” applications
• kftp, ktelnet, ssh, zephyr, etc

• afslog uses Kerberos tickets to get AFS token

unix41:~ebardsle> klist

Credentials cache: FILE:/ticket/krb5cc_61189_9FTlN6

Principal: ebardsle@ANDREW.CMU.EDU

Issued Expires Principal

Apr 18 19:40:50 Apr 19 20:40:49 krbtgt/ANDREW.CMU.EDU@ANDREW.CMU.EDU

Apr 18 19:40:50 Apr 19 20:40:49 afs@ANDREW.CMU.EDU

Apr 18 19:40:51 Apr 19 20:40:49 imap/cyrus.andrew.cmu.edu@ANDREW.CMU.EDU

20

Asymmetric Key Crypto:

• Instead of shared keys, each person has a “key

pair”

Bob’s public key

Bob’s private key

KB

KB
-1

• The keys are inverses, so: KB
-1 (KB (m)) = m

21

Asymmetric Key Crypto:

• It is believed to be computationally unfeasible to

derive KB
-1 from KB or to find any way to get M

from KB(M) other than using KB
-1 .

=> KB can safely be made public.

Note: We will not detail the computation that KB(m) entails, but rather treat

these functions as black boxes with the desired properties.

22

Asymmetric Key: Confidentiality

ciphertextencryption

algorithm
decryption

algorithm

Bob’s public

key

plaintext

message
KB (m)

Bob’s private

key

m = KB
-1 (KB (m))

KB

KB
-1

23

Asymmetric Key: Sign & Verify

• The message must be from Bob, because it must be the

case that S = KB
-1(M), and only Bob has KB

-1 !

• If we are given a message M, and a value S such

that KB(S) = M, what can we conclude?

• This gives us two primitives:
• Sign (M) = KB

-1(M) = Signature S

• Verify (S, M) = test(KB(S) == M)

24

Asymmetric Key: Integrity & Authentication

• We can use Sign() and Verify() in a similar

manner as our HMAC in symmetric schemes.

Integrity:
S = Sign(M) Message M

Receiver must only check Verify(M, S)

Authentication:
Nonce

S = Sign(Nonce)

Verify(Nonce, S)

25

Asymmetric Key Review:

• Confidentiality: Encrypt with Public Key of

Receiver

• Integrity: Sign message with private key of the

sender

• Authentication: Entity being authenticated signs a

nonce with private key, signature is then verified

with the public key

But, these operations are computationally expensive*

26

Cryptographic Hash Functions

• Given arbitrary length message m, compute constant
length digest h(m)

• Desirable properties
• h(m) easy to compute given m

• Preimage resistant

• 2nd preimage resistant

• Collision resistant

• Crucial point : These are not inverted, they are
recomputed

• Example use: file distribution (ur well aware of that!)

• Common algorithms: MD5, SHA

27

Digital Signatures

• Alice wants to convince others that she wrote message m

• Computes digest d = h(m) with secure hash

• Send <m,d>

• Digital Signature Standard (DSS)

28

The Dreaded PKI

• Definition:

Public Key Infrastructure (PKI)

1) A system in which “roots of trust” authoritatively

bind public keys to real-world identities

2) A significant stumbling block in deploying many

“next generation” secure Internet protocol or

applications.

29

Certification Authorities

• Certification authority (CA): binds public key to

particular entity, E.

• An entity E registers its public key with CA.

• E provides “proof of identity” to CA.

• CA creates certificate binding E to its public key.

• Certificate contains E’s public key AND the CA’s signature of

E’s public key.

Bob’s

public

key

Bob’s

identifying

information

CA

generates

S = Sign(KB)

CA

private

key

certificate = Bob’s

public key and

signature by CA

KB

K-1
CA

KB

30

Certification Authorities

• When Alice wants Bob’s public key:

• Gets Bob’s certificate (Bob or elsewhere).

• Use CA’s public key to verify the signature within
Bob’s certificate, then accepts public key

Verify(S, KB)

CA

public

key KCA

KB
If signature is

valid, use KB

31

Certificate Contents
• info algorithm and key value itself (not shown)

• Cert owner

• Cert issuer

• Valid dates

• Fingerprint

of signature

32

Pretty Good Privacy (PGP)

• History
• Written in early 1990s by Phil Zimmermann

• Primary motivation is email security

• Controversial for a while because it was too strong

• Distributed from Europe

• Now the OpenPGP protocol is an IETF standard (RFC 2440)

• Many implementations, including the GNU Privacy Guard (GPG)

• Uses
• Message integrity and source authentication

• Makes message digest, signs with public key cryptosystem

• Webs of trust

• Message body encryption

• Private key encryption for speed

• Public key to encrypt the message’s private key

33

Secure Shell (SSH)

• Negotiates use of many different algorithms

• Encryption

• Server-to-client authentication
• Protects against man-in-the-middle

• Uses public key cryptosystems

• Keys distributed informally

• kept in ~/.ssh/known_hosts

• Signatures not used for trust relations

• Client-to-server authentication
• Can use many different methods

• Password hash

• Public key

• Kerberos tickets

34

SSL/TLS

• History

• Standard libraries and protocols for encryption and

authentication

• SSL originally developed by Netscape

• SSL v3 draft released in 1996

• TLS formalized in RFC2246 (1999)

• Uses public key encryption

• Uses

• HTTPS, IMAP, SMTP, etc

35

Transport Layer Security (TLS)
aka Secure Socket Layer (SSL)

• Used for protocols like HTTPS

• Special TLS socket layer between application and TCP

(small changes to application).

• Handles confidentiality, integrity, and authentication.

• Uses “hybrid” cryptography.

36

Setup Channel with TLS “Handshake”

Handshake Steps:

1) Clients and servers negotiate

exact cryptographic protocols

2) Client’s validate public key

certificate with CA public key.

3) Client encrypt secret random

value with servers key, and send

it as a challenge.

4) Server decrypts, proving it has

the corresponding private key.

5) This value is used to derive

symmetric session keys for

encryption & MACs.

37

How TLS Handles Data

1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”,

which includes a short header and data that is encrypted, as well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for transmission.

38

Works Cited/Resources

• http://www.psc.edu/~jheffner/talks/sec_lecture.pdf

• http://en.wikipedia.org/wiki/One-time_pad

• http://www.iusmentis.com/technology/encryption/des/

• http://en.wikipedia.org/wiki/3DES

• http://en.wikipedia.org/wiki/AES

• http://en.wikipedia.org/wiki/MD5Textbook: 8.1 – 8.3

• Wikipedia for overview of Symmetric/Asymmetric primitives and
Hash functions.

• OpenSSL (www.openssl.org): top-rate open source code for
SSL and primitive functions.

• “Handbook of Applied Cryptography” available free online:
www.cacr.math.uwaterloo.ca/hac/

http://www.psc.edu/~jheffner/talks/sec_lecture.pdf
http://en.wikipedia.org/wiki/One-time_pad
http://www.iusmentis.com/technology/encryption/des/
http://en.wikipedia.org/wiki/3DES
http://en.wikipedia.org/wiki/AES
http://en.wikipedia.org/wiki/MD5
http://www.openssl.org/

