
14-736: Distributed Systems

Lecture 23: Key Distribution and Management

Thanks to the many, many people who have contributed various 

slides to this deck over the years.
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Key Distribution

• Have network with n entities

• Add one more
• Must generate n new keys

• Each other entity must securely get its new key

• Big headache managing n2 keys!

• One solution: use a central keyserver
• Needs n secret keys between entities and keyserver

• Generates session keys as needed

• Downsides
• Only scales to single organization level

• Single point of failure
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Symmetric Key Distribution

• How does Andrew do this?

Andrew Uses Kerberos, which relies on a 

Key Distribution Center (KDC) to establish 

shared symmetric keys.
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Key Distribution Center (KDC)

• Alice, Bob need shared symmetric key.

• KDC: server shares different secret key with each 

registered user (many users)

• Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for 

communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC
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Key Distribution Center (KDC)

Alice

knows 

R1

Bob knows to 

use  R1 to 

communicate 

with Alice

Alice and Bob communicate: using R1 as 

session key for shared symmetric encryption 

Q: How does KDC allow Bob, Alice to determine shared 

symmetric secret key to communicate with each other? 

KDC 

generates  

R1

KB-KDC(A,R1) 

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1) )
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How Useful is a KDC?

• Must always be online to support secure 

communication

• KDC can expose our session keys to others!

• Centralized trust and point of failure.

In practice, the KDC model is mostly used within 

single organizations (e.g. Kerberos) but not more 

widely.  
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Kerberos

• Trivia
• Developed in 80’s by MIT’s Project Athena

• Used on all Andrew machines

• Mythic three-headed dog guarding the entrance to Hades

• Uses DES, 3DES

• Key Distribution Center (KDC)
• Central keyserver for a Kerberos domain

• Authentication Service (AS)
• Database of all master keys for the domain

• Users’ master keys are derived from their passwords

• Generates ticket-granting tickets (TGTs)

• Ticket Granting Service (TGS)
• Generates tickets for communication between principals

• “slaves” (read only mirrors) add reliability

• “cross-realm” keys obtain tickets in others Kerberos domains
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Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ
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(1) AS_REQUEST

• The first step in accessing a service that requires 

Kerberos authentication is to obtain a ticket-

granting ticket. 

• To do this, the client sends a plain-text message 

to the AS: 

• <client id, KDC id, requested ticket expiration, nonce1> 
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Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ
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(2) AS_REPLY

• <{Kc,TGS, none1}Kc, {ticketc,tgs}KTGS> 

• Notice the reply contains the following:

• The nonce, to prevent replays

• The new session key

• A ticket that the client can’t read or alter

• A ticket: 
• ticketx,y = {x, y, beginning valid time, expiration time, Kx,y} 
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Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ
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(3) TGS_REQUEST

• The TGS request asks the TGS for a ticket to 

communicate with a a particular service.

• <{authc} Kc, TGS
, {ticketc, TGS}KTGS, service, nonce2>

•

• <{authc} is known as an authenticator it contains the name 

of the client  and a timestamp for freshness
.
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Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ
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(4) TGS_REPLY

• <{Kc,service, nonce2}K c, TGS, {ticketc, service }Kservice >

• Notice again that the client can’t read or alter the 

ticket

• Notice again the use of the session key and 

nonce between the client and the TGS
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(5) APP_REPLY

• <{authc}Kc,service
, {ticketc,service}Kservice, request, nonce3>

• Notice again the use of the session key as well as 

the protected ticket. 
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Kerberos Authentication Steps

Kerberos

ServerClient

TGS

TGT Service TKT

Service REQ
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(6) APP_REPLY

• <{nonce3}Kc,service, response> 

• Because of the use of the encrypted nonce, the 

client is assured the reply came form the 

application, not an imposter.
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Using Kerberos

• kinit
• Get your TGT

• Creates file, usually stored in /tmp

• klist
• View your current Kerberos tickets

• kdestory
• End session, destroy all tickets

• kpasswd
• Changes your master key stored by the AS

• “Kerberized” applications
• kftp, ktelnet, ssh, zephyr, etc

• afslog uses Kerberos tickets to get AFS token

unix41:~ebardsle> klist

Credentials cache: FILE:/ticket/krb5cc_61189_9FTlN6

Principal: ebardsle@ANDREW.CMU.EDU

Issued           Expires          Principal

Apr 18 19:40:50  Apr 19 20:40:49  krbtgt/ANDREW.CMU.EDU@ANDREW.CMU.EDU

Apr 18 19:40:50  Apr 19 20:40:49  afs@ANDREW.CMU.EDU

Apr 18 19:40:51  Apr 19 20:40:49  imap/cyrus.andrew.cmu.edu@ANDREW.CMU.EDU
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Asymmetric Key Crypto:

• Instead of shared keys, each person has a “key 

pair”

Bob’s public key 

Bob’s private key 

KB

KB
-1 

• The keys are inverses, so: KB
-1 (KB (m)) = m
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Asymmetric Key Crypto:

• It is believed to be computationally unfeasible to 

derive KB
-1 from KB or to find any way to get M 

from KB(M) other than using KB
-1 .  

=> KB can safely be made public.

Note: We will not detail the computation that KB(m) entails, but rather treat 

these functions as black boxes with the desired properties.
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Asymmetric Key: Confidentiality

ciphertextencryption

algorithm
decryption 

algorithm

Bob’s public

key 

plaintext

message
KB (m)

Bob’s private

key 

m = KB
-1 (KB (m))

KB

KB
-1 
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Asymmetric Key: Sign & Verify

• The message must be from Bob, because it must be the 

case that S = KB
-1(M), and only Bob has KB

-1 ! 

• If we are given a message M, and a value S such 

that KB(S) = M, what can we conclude? 

• This gives us two primitives:
• Sign (M) = KB

-1(M) = Signature S

• Verify  (S, M) = test( KB(S) == M ) 
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Asymmetric Key: Integrity & Authentication

• We can use Sign() and Verify() in a similar 

manner as our HMAC in symmetric schemes.

Integrity:
S = Sign(M) Message M

Receiver must only check Verify(M, S) 

Authentication:
Nonce

S = Sign(Nonce)

Verify(Nonce, S)
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Asymmetric Key Review:

• Confidentiality: Encrypt with Public Key of 

Receiver

• Integrity: Sign message with private key of the 

sender

• Authentication: Entity being authenticated signs a 

nonce with private key, signature is then verified 

with the public key

But, these operations are computationally expensive*
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Cryptographic Hash Functions

• Given arbitrary length message m, compute constant 
length digest h(m)

• Desirable properties
• h(m) easy to compute given m

• Preimage resistant

• 2nd preimage resistant

• Collision resistant

• Crucial point : These are not inverted, they are 
recomputed

• Example use: file distribution (ur well aware of that!)

• Common algorithms: MD5, SHA
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Digital Signatures

• Alice wants to convince others that she wrote message m

• Computes digest d = h(m) with secure hash

• Send <m,d> 

• Digital Signature Standard (DSS)
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The Dreaded PKI

• Definition:

Public Key Infrastructure (PKI)

1) A system in which “roots of trust” authoritatively 

bind public keys to real-world identities

2) A significant stumbling block in deploying  many 

“next generation” secure Internet protocol or 

applications.    
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Certification Authorities

• Certification authority (CA): binds public key to 

particular entity, E.

• An entity E registers its public key with CA.

• E provides “proof of identity” to CA. 

• CA creates certificate binding E to its public key.

• Certificate contains E’s public key AND the CA’s signature of 

E’s public key.  

Bob’s 

public

key 

Bob’s 

identifying 

information 

CA 

generates

S = Sign(KB)

CA 

private

key 

certificate = Bob’s 

public key and  

signature by CA

KB 

K-1
CA

KB
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Certification Authorities

• When Alice wants Bob’s public key:

• Gets Bob’s certificate (Bob or elsewhere).

• Use CA’s public key to verify the signature within 
Bob’s certificate, then accepts public key

Verify(S, KB)

CA 

public

key KCA

KB
If signature is 

valid, use KB
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Certificate Contents
• info algorithm and key value itself (not shown)

• Cert owner

• Cert issuer

• Valid dates

• Fingerprint 

of signature
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Pretty Good Privacy (PGP)

• History
• Written in early 1990s by Phil Zimmermann

• Primary motivation is email security

• Controversial for a while because it was too strong

• Distributed from Europe

• Now the OpenPGP protocol is an IETF standard (RFC 2440)

• Many implementations, including the GNU Privacy Guard (GPG)

• Uses
• Message integrity and source authentication

• Makes message digest, signs with public key cryptosystem

• Webs of trust

• Message body encryption

• Private key encryption for speed

• Public key to encrypt the message’s private key
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Secure Shell (SSH)

• Negotiates use of many different algorithms

• Encryption

• Server-to-client authentication
• Protects against man-in-the-middle

• Uses public key cryptosystems

• Keys distributed informally

• kept in ~/.ssh/known_hosts

• Signatures not used for trust relations

• Client-to-server authentication
• Can use many different methods

• Password hash

• Public key

• Kerberos tickets
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SSL/TLS

• History

• Standard libraries and protocols for encryption and 

authentication

• SSL originally developed by Netscape

• SSL v3 draft released in 1996

• TLS formalized in RFC2246 (1999)

• Uses public key encryption

• Uses

• HTTPS, IMAP, SMTP, etc
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Transport Layer Security (TLS)
aka Secure Socket Layer (SSL)

• Used for protocols like HTTPS

• Special TLS socket layer between application and TCP 

(small changes to application).

• Handles confidentiality, integrity, and authentication.

• Uses “hybrid” cryptography. 
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Setup Channel with TLS “Handshake” 

Handshake Steps: 

1) Clients and servers negotiate 

exact cryptographic protocols

2) Client’s validate public key 

certificate with CA public key. 

3) Client encrypt secret random 

value with servers key, and send 

it as a challenge.  

4) Server decrypts, proving it has 

the corresponding private key.

5) This value is used to derive 

symmetric session keys for 

encryption & MACs.
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How TLS Handles Data

1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”, 

which includes a short header and data that is encrypted, as well as a MAC.  

4) Records form a byte stream that is fed to a TCP socket for transmission.  
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