
Security:

An Overview of

Cryptographic Techniques

14-736

With slides from: Debabrata Dash, Nick Feamster,

Gregory Kesden, Vyas Sekar and others

2

Cryptography, Cryptographic Protocols

and Key Distribution

• Authentication

• Mutual Authentication

• Private/Symmetric Keys

• Public Keys

• Key Distribution

3

What do we need for a secure

communication channel?

• Authentication (Who am I talking to?)

• Confidentiality (Is my data hidden?)

• Integrity (Has my data been modified?)

• Availability (Can I reach the destination?)

4

What is cryptography?

"cryptography is about communication in the

presence of adversaries."

- Ron Rivest

“cryptography is using math and other crazy

tricks to approximate magic”

- Unknown TA

5

What is cryptography?

Tools to help us build secure communication

channels that provide:

1) Authentication

2) Integrity

3) Confidentiality

6

Cryptography As a Tool

• Using cryptography securely is not simple

• Designing cryptographic schemes correctly

is near impossible.

Today we want to give you an idea of what

can be done with cryptography.

Take a security course if you think you may

use it in the future

7

The Great Divide

Symmetric Crypto

(Private key)

(E.g., AES)

Asymmetric Crypto

(Public key)

(E.g., RSA)

Shared secret

between parties? Yes

Speed of crypto

operations Slow

No

Fast

8

Symmetric Key: Confidentiality

Motivating Example:

You and a friend share a key K of L random bits, and
want to secretly share message M also L bits long.

Scheme:

You send her the xor(M,K) and then she “decrypts”
using xor(M,K) again.

1) Do you get the right message to your friend?

2) Can an adversary recover the message M?

3) Can adversary recover the key K?

9

Symmetric Key: Confidentiality

• One-time Pad (OTP) is secure but usually impactical

 Key is as long at the message

 Keys cannot be reused (why?)

Stream Ciphers:

Ex: RC4, A5

Block Ciphers:

Ex: DES, AES,

Blowfish

In practice, two types of ciphers

are used that require constant

length keys:

10

Symmetric Key: Confidentiality

• Stream Ciphers (ex: RC4)

PRNG
Pseudo-Random stream of L bits

Message of Length L bits

XOR

=

Encrypted Ciphertext

K A-B

Bob uses KA-B as PRNG seed, and XORs encrypted text

to get the message back (just like OTP).

Alic

e:

11

Symmetric Key: Confidentiality

Block 4Block 3Block 2Block 1

Round #1 Round #2 Round #n

Block 1

 Block Ciphers (ex: AES)

K A-B

Alice:

Bob breaks the ciphertext into blocks, feeds it through

decryption engine using KA-B to recover the message.

Block 2 Block 3 Block 4

(fixed block size,

e.g. 128 bits)

12

Cryptographic Hash Functions

• Consistent
hash(X) always yields same result

• One-way
given Y, can’t find X s.t. hash(X) = Y

• Collision resistant
given hash(W) = Z, can’t find X such that hash(X) = Z

Hash FnMessage of arbitrary length
Fixed Size

Hash

13

Symmetric Key: Integrity

• Hash Message Authentication Code (HMAC)

Hash Fn
Message

MAC Message

Alice Transmits Message & MAC

Why is this secure?

How do properties of a hash function help us?

MAC

Step #1:

Alice creates

MAC

Step #2 Step #3

Bob computes MAC with

message and KA-B to verify.

K A-B

14

Symmetric Key: Authentication

• You already know how to do this!

(hint: think about how we showed integrity)

Hash Fn
I am Bob

A43FF234

Alice receives the hash, computes a hash with KA-B , and she knows the sender

is Bob

whoops!

K A-B

15

Symmetric Key: Authentication

What if Mallory overhears the hash sent by Bob, and
then “replays” it later?

ISP A

ISP D

ISP C

ISP B

Hello, I’m
Bob. Here’s

the hash to

“prove” it

A43FF234

16

Symmetric Key: Authentication

• A “Nonce”
 A random bitstring used only once. Alice sends nonce to Bob as a

“challenge”. Bob Replies with “fresh” MAC result.

Hash
Nonce

B4FE64

Bob

K A-B

Nonce

B4FE64

Alice

Performs same

hash with KA-B

and compares

results

17

Symmetric Key: Authentication

• A “Nonce”
 A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC
result.

Nonce

Alice

?!?!

If Alice sends Mallory a nonce,

she cannot compute the

corresponding MAC without K A-B

Mallory

18

Symmetric Key Crypto Review

• Confidentiality: Stream & Block Ciphers

• Integrity: HMAC

• Authentication: HMAC and Nonce

Questions??

Are we done? Not Really:

1) Number of keys scales as O(n2)

2) How to securely share keys in the first place?

19

Asymmetric Key Crypto:

• Instead of shared keys, each person has a

“key pair”
Bob’s public key

Bob’s private

key

KB

KB
-1

 The keys are inverses, so: KB
-1 (KB (m)) = m

20

Asymmetric Key Crypto:

 It is believed to be computationally unfeasible

to derive KB
-1 from KB or to find any way to get

M from KB(M) other than using KB
-1 .

=> KB can safely be made public.

Note: We will not explain the computation that KB(m) entails, but rather

treat these functions as black boxes with the desired properties.

21

Asymmetric Key: Confidentiality

ciphertextencryption

algorithm
decryption

algorithm

Bob’s public

key

plaintext

message

KB (m)

Bob’s private

key

m = KB
-1 (KB (m))

KB

KB
-1

22

Asymmetric Key: Sign & Verify

• The message must be from Bob, because it must be

the case that S = KB
-1(M), and only Bob has KB

-1 !

 If we are given a message M, and a value S

such that KB(S) = M, what can we conclude?

 This gives us two primitives:
 Sign (M) = KB

-1(M) = Signature S

 Verify (S, M) = test(KB(S) == M)

23

Asymmetric Key Review:

• Confidentiality: Encrypt with Public Key of

Receiver

• Integrity: Sign message with private key of

the sender

• Authentication: Entity being authenticated

signs a nonce with private key, signature is

then verified with the public key

But, these operations are computationally

expensive*

24

Biometrics

 Nice in some respects

 No need to distribute

 Reducible to digital form

 Unique in practice

 Hard to duplicate?

 Used via binary representation

 Warm gelatin fingers or slip-on finger-pads molded to prints?

 Artificial eyeballs made to match scans?

 Pictures? Videos w/blinking?

 Change over time?

 Injury?

 Aging?

 Not replaceable or revocable

 What happens when “stolen?”

 Are you “Deleted”?!?!?

 (Well, you do have 10 fingers, two retinas, one nose, etc)

25

Multi-Factor, Human Factors

 Best systems use more than one factor

 Something you know

 Something piece of you

 Biometrics + Password/Q&A Challenge, Etc

 More natural factors better than fewer unnatural

challenges

 More weak factors may be stronger than fewer stronger

factors

 Human factors are critical

 Too many password restrictions? Too many passwords?

 Write them down on Post-Its Notes!

26

Summary

• Symmetric (pre-shared key, fast) and asymmetric

(key pairs, slow) primitives provide:

▪ Confidentiality

▪ Integrity

▪ Authentication

• “Hybrid Encryption” leverages strengths of both.

• Great complexity exists in securely acquiring keys.

• Crypto is hard to get right, so use tools from others,

don’t design your own (e.g. TLS).

Introduction to Blockchains
John Kelsey, NIST

https://csrc.nist.gov/csrc/media/projects/supply-chain-risk-
management/documents/ssca/2016-fall/wed_am2-

block_chain_john_kelsey.pdf

Overview

• Prologue: A chess-by-mail analogy

• What problem does a blockchain solve?

• How do they work?
• Hash chains

• Deciding what blocks are valid on the chain

• Deciding whether we have the current chain

• Permissioned blockchains, proof of work, etc.

• Wrapup

Warm-up: Alice and Bob want to play chess by mail

• Alice sends Bob “1 e4”

• Bob sends back “1 ... e5”

• Alice sends Bob “2 Nf3”

• ...

• Each of these messages is one move in the game

• What’s necessary for them to be able to play the game?

They have to agree on the state of the board

If they don’t agree on the state of the board, they can’t play a game!

1. Both know the starting positions of the board.

2. Both know the sequence of messages so far.
• Those messages make up a transcript of the game.

3. Thus, they can reconstruct the state of the board.

If we agree on history, we agree on the present state of the world!

What’s that got to do with

blockchain?
• We have some distributed system

• We need to all agree on the state of some system

• We all agree on the initial state of the system

• A blockchain contains a history of individual transactions

• Thus: We can all agree on the current state of the system

A blockchain lets mutually-distrusting entities agree on history...

...which lets them agree on the state of the system now.

Why is this important?

• Example: Bitcoin

• Suppose I want to transfer 100 BTC to you.

• You need to know whether my account has 100 BTC in it.

• For that, you need to know the current state of the system.

• Note: You need to know the current state
• If you’re looking at an old state of the system, I might be paying you with

money I’ve already spent!

What problem does a blockchain solve?

A blockchain lets us agree on the state of the system, even if we don’t
all trust each other!

• Ultimate goal: We all need to agree on the state of some system.
• How much BTC in each account?
• Who owns which property?
• What’s the current state of my program?

• We can all agree on that if we agree on history.
• Starting state + history current state

• We don’t want a single trusted arbiter of the state of the world.
• We want some level of decentralization—not a single point of failure or

compromise.

Trusted Arbiter

• If we had a completely trusted arbiter, we wouldn’t need a
blockchain!

• We could just define reality as whatever TA said it was.

• For a payment system, imagine TA as the bank
• Bank provides the official sequence of transactions and account balances

• When you want to spend your money, you send a message to bank

• Bank permits transaction if you have money, and updates account balances.

Why not just have a trusted arbiter, then?

1. Single point of failure
• If the TA goes down for a week, the system stops working!

2. Concentration of power
• “He who controls the past, controls the future”

• TA can censor transactions, impose new conditions to get transactions
included in history, etc.

3. Maybe there’s nobody we all trust

So what does a blockchain buy us, again?

• Distributed system

• We don’t all trust each other or any single entity

• We want to agree on history

• ...so we can agree on the state of our system...

• ...so we can do something.

We get the functionality of a trusted arbiter...

...without needing a trusted arbiter

How does it work?

• A blockchain is a sequence of hash-chained records
• Once you’ve seen record N, you can’t change anything in the past.

• Some procedure for adding blocks to blockchain
• Who gets to add blocks? How is it done?

• Validity conditions for new blocks
• Are transactions valid? Are digital signatures correct? Etc.
• Enforced by consensus-–chains with invalid blocks won’t be accepted.

• Some procedure for deciding between alternative candidate
blockchains.

• When Alice and Bob have different pictures of history, there’s some way for
them to eventually come to agreement about who is right.

Building Block: Cryptographic hash functions

A cryptographic hash function:

• Takes any bitstring as an input* (Like a 10 MB file)

• Produces a fixed-length output (Typically 256 or 512 bits)

• Nobody can find collisions.

• Examples: SHA256, SHA512, SHA3-256, RIPEMD-160

* Sometimes there’s a (really huge) maximum input length.

What’s a collision?

• Suppose I can find two different inputs X and Y so that

Hash(X) = Hash(Y)

• That’s a collision.

• For a cryptographic hash function to be any good, it needs to be
collision-resistant.

• That just means it’s impossible in practice to find colliding inputs.

Why is collision resistance useful?

• If nobody can find X != Y such that Hash(X) == Hash(Y),

• ...then we can use hash(X) as a kind of message digest of X.
• Digital signatures actually sign hash(message) instead of message.

• Nobody can change X without changing hash(X)
• If they could do that, they can find collisions for hash()

• hash(X) also commits to X.
• Once I’ve seen hash(X), later, you can show me X, and I’ll know it’s the value

you committed to

• ...you can’t show me some other X*, because it won’t have the same hash.

Building block: Hash chains

Figure: A sequence of records linked together; each record contains the hash of the previous record.

What’s a hash chain?

• A hash chain is a sequence of records in which each record contains
the hash of the previous record in the chain, and the hash of all the
current record’s contents.

Figure: A sequence of records linked together; each record contains the hash of the previous record.

What does that buy us?

• We’re using a cryptographic hash function like SHA256.

• That means nobody can find two inputs with the same hash value.

• ...and that means that record N contains a commitment to record N-1

• ...which contains a commitment to record N-2, which contains a
commitment to record N-3, and so on.

Figure: A sequence of records linked together; each record contains the hash of the previous record.

Hash chains and block chains

•Hash chains have the property that every record
contains a commitment to all previous records.

• If you change record N, this changes the final hashes of records N+1, N+2, ...

•Result: Once we all accept record N, we have locked
in the contents of record 1, 2, 3, ..., N-1 as well.

•Blockchains use hash chains as a component

•Hash chains are also useful in a lot of other contexts
• For example, a system with a trusted arbiter can use a hash chain to limit the arbiter’s

power—even the arbiter can’t change history.

The block chain

 Each block in the chain commits to all previous
blocks and transactions

Hash10

Nonce11

Trans
11

H

Hash11

Nonce12

Trans
12

H

Hash12

Nonce13

Trans
13

H
...

H
...

Figure: A block chain containing three blocks, each containing the hash of the previous block,
and each containing a sequence of transactions and a nonce.

Building Block: Validity conditions

What will the world accept as the next block?

• We don’t have some trusted entity to decide what may be added to block
chain

• ...so we have to decide what blocks are valid.
• Example: Bitcoin

• Signatures needed for moving BTC from an account
• Not allowed to leave a negative balance in an account
• Block must contain correct proof-of-work

• A proposed additional block that doesn’t meet these conditions won’t be
accepted by the rest of the network.

Enforced by consensus

Forked chains

• Blockchains are used in distributed systems

• It’s possible for different parties in the system to have a disagreement
• There’s no trusted arbiter to decide who is right!

• Any blockchain must deal with this issue somehow!

• Suppose Alice and Bob no longer agree on the state of the world
• (because they don’t agree on history)

• How do they come to an agreement on who’s right?
• Several different techniques to resolve disagreements

Adding new blocks to the chain

• Any blockchain system has to determine who can add new blocks to
the chain, and how it’s done.

• Two main ideas I’ll discuss below
• Proof of work

• Permissioned blockchain

• Also more ideas I’m not going to talk about
• Proof of stake

• Proof of storage

• Probably several more I’ve never heard of

Building Block: Proof of Work

 I want you to do a big computation.
 I want you to prove you did it.

 I don't want to do much work checking the proof.

 Why is this useful?
 Limits the rate of new blocks

 Makes attempts to add invalid blocks to the chain expensive

 Provides a clear way to decide between competing chains when
there is a disagreement—the one with the most work wins.

Note: Not all blockchains use proof of work

Hash-based proof of work

 I give you challenge C and limit L = 2220.

 Ask you to find N such that

SHA256(C||N) < L

 Expected work = 236

 Each new N has prob 2-36 of success

 When you succeed, only takes me one hash to check.

This is more-or-less Adam Back's hashcash scheme

Proofs of work in every block

Hash10

Nonce11

Trans
11

H

Hash11

Nonce12

Trans
12

H

Hash12

Nonce13

Trans
13

H
...

H
...

Choose this

value....

To make this

value less

than L

Figure: Three blocks in a block chain. The nonce in the first block is chosen to force its hash value (which appears
in the second block) to be less than L.

Proofs of work solve some problems...

• We can resolve disagreements.
• When chain forks, take fork with most work.

• When there’s a tie, keep working till one of the chains has the most work.

• Discourage people trying to add invalid blocks to chain.
• You spend money adding a block to chain...

• ...but if it’s not valid, nobody accepts it.

• Part of how Bitcoin’s very clever design of incentives works.

...but introduce others

• Expensive—lots of energy used do generate proofs
• Done by “miners” in Bitcoin

• Use special-purpose mining rigs optimized for doing proofs of work.

• Environmental impact—uses lots of power, accomplishing no useful goal
except keeping blockchain working

• Slow—proof of work seems to put a limit on transaction speed
• Even more when you consider need to resolve potential disagreements

• Bitcoin rule of thumb is wait 6 blocks (about an hour) to be sure of
transaction

Permissioned blockchains

• An alternative to proof-of-work

• We have set of somewhat-trusted entities who can work together to
add records to the blockchain.

• For example, we could have five trustees, and if any 3/5 vote in favor
of accepting a block on the chain, then the block is added.

• Validity condition for adding a block = 3/5 signatures
• Resolution for conflicting chains = look for longest chain (aka most

votes)
• With 3/5 there shouldn’t be any forked chains—someone would have to vote

for two competing blocks!

Incentive design

• The real genius in Bitcoin’s design is the way incentives are aligned
• Untrusted, self-interested miners keep the system working

• They have a big incentive to follow the protocol

• They have substantial capital invested in Bitcoin, so they also have an
incentive to avoid any attack that would undermine their investment

• This all works because Bitcoin is all about moving money around, so it’s easy
to build payoffs into the protocol.

• Other blockchains (especially permissioned ones) have to find
alternatives to incentives

• Not so obvious how to build a payoff into a protocol to store medical records

Why do we trust trustees?

• Existing business or legal arrangements?

• Incentives for playing fair?

• Reputation?

• We have the “And then you go to jail” problem....

“And then you go to jail”

• It’s usually a bad idea to build crypto protocols that rely on outside
enforcement mechanisms

• Sending misbehaving users to jail

• Suing people who don’t follow the protocol

• Assuming that damage to someone’s reputation will convince them to behave
properly.

• Lots of examples of these things not working
• Even if they do work, they tend to be slow

• This is something any permissioned blockchain has to solve

Wrapup 1: Blockchains let us agree on history

• We don’t have to trust each other

• We don’t have to have a trusted third party

• System is distributed

• Agreeing on history agreeing on state of system

Wrapup 2: Blockchains and hash chains

• The Nth record in the hash chain commits to all previous records.

• Can’t change any previous record without making hash chain invalid.

• A blockchain is a hash chain with some other stuff added
• Validity conditions

• Way to resolve disagreements

Wrapup 3: Permissioned vs Proof-of-work

• Most blockchains in use now use proof-of-work

• Many new proposals use permissioned blockchains
• Some set of somewhat-trusted entities

• There are other ways to do it
• Proof of storage

• Proof of stake

• Probably more I don’t know about

Questions?

