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Scenario

• A system is needed to support high-throughput updates

• The total data volume is larger than the main memory budget

• Writes to secondary storage occur more quickly and efficiently when batched 
than when written individually.

• For example, writing a whole block of  data at a time amortizes disk seek and rotational 
delay

• Sorting and indexing data in main memory can be done relatively efficiently 
causing relatively little delay. 



Collect and Batch Updates In Memory

• Collect updates in memory

• Sort them somehow

• Sorted string list

• Tree, Etc. 

• Updates possible to in-memory values

• But, once a value is written to disk, it stays written

• Queries will need to find all records and merge

• Tombstone deletes



Spill From Memory To Disk

• As memory budget approaches full, spill them to disk

• Write out entire sorted string table 

• Write out a subtree, then remove and prune it in memory

• Each dump from memory to disk forms a “run” of  some kind

• Runs are time ordered



Merge, Idea #1

• Possibility #1:

• Merge portions of  in-memory data structure into on-disk data structure as spilled

• Common when pruning in-memory trees and merging into on-disk trees

• Slows the freeing of  memory



Merge Idea #2

• Possibility #2:

• Dump from memory into new “run”, i.e. data structure in secondary storage

• Maintain in-memory Bloom Filters, one per disk run, to support queries

• Upon query, check Bloom Filters 

• Then check on-disk runs only where Bloom filters indicated possible match

• Merge updates disk data structures in background

• By similar tree pruning, if  tree

• By merging files into new files if  tables

• Delete then update Bloom Filter, since false positives aren’t fatal



Merge Idea #3

• Compaction occurs as part of  the merges

• Deletes Tombstoned records

• Merges multiple updates into one

• Recovers storage from merged updates and deleted values



Log-Structured Merge Trees (LSMs)

• When we spill subtrees or branches from an in-memory tree into a tree in 

secondary storage, this strategy is known as a Log-Structured Merge Tree 

(LSM) Tree

• The in-memory tree is often known as C0 and the tree in secondary storage is known as 

C1.

• If  there are more levels of  trees (not within a tree), they are known as C1, C2, etc.



Memtable, SSIndex, SSTable

• Common idiom in practice

• Memtable in main memory contains sorted values and likely sorted <key, offset> index.

• When spilled to disk is divided into SSTables and SSIndexes written separately

• Indexes or Bloom Filters kept in memory

• Merging in background when threshold met in terms of  number of  tables, etc.

• Merges perform compaction 

• Write-Ahead logs used to aid recovery. 

• Used in some form by Cassandra, Hbase, LevelDB, BigTable, Etc. 



Summary

• Overall strategy

• Fill memory

• Spill to disk

• Search disk runs until they can be merged

• Use Bloom Filters to minimize unproductive searches

• Updated in-memory, but merge independent changes once on disk.

• The overall strategy is sound even if  it…

• Does not involve trees, for example by using sorted string tables, and 

• Even if  it leaves a forest of  data structures to be searched after consulting a Bloom Filter. 



New Scenario

• Multiple (May be a large number), independent key-value stores, such as LSMs

• Each is in secondary storage and relatively slow to access/search.

• Values may not be contained within zero or more of  the stores

• Never present

• Written Once

• Written and Over-Written

• Written and Lazy Deleted by “Tombstoning”

• Multiple partial updates that need to be unioned to form up-to-date record



Goal

• Minimize wasted time/energy searching data stores which do not have 

requested key.

• Add minimal overhead w.r.t. main memory foot-print, processor load, etc. 



Idea and Challenges

• Idea: Keep an in-memory index  

• Challenge: The on-disk data structures are most-likely indexes or keep 
relatively small metadata and are still too large to fit in memory, hence the 
need to keep them on disk

• Large data values are normally kept in separate data stores and indexes keep references 
to their location, etc. 

• Revised idea: Need an extremely dense index, e.g. ideally one or a few bits 
per item



Idea #1

• Idea: 

• Keep an in-memory hash table: <key, store-ID>

• Good: 

• Near constant time ability to discover which stores to search

• Challenges: 

• Need to manage collision

• Lists get to be expensive in processor and memory

• Could be limiting



Idea #2

• Idea #2: 

• Keep one hash table per external store, check each

• One bit per address: Present or not

• Search only data structures where present

• Good:

• Smaller

• Fast to check, even given multiple data structures

• Challenges:

• Managing collision means complexity 

• Reducing collision means a much bigger table, which means more memory wasted



Idea #3

• Idea:

• Ignore Collision

• Good:

• Can have small tables with little complexity

• Bad:

• Could thing something is present in secondary store when it is really a colliding record

• Waste time looking just to find nothing

• Thought:

• If  collisions aren’t super common, this is probably okay. 



Bloom Filter

• This device is called a Bloom Filter 

• First conceived by Burton Howard Bloom in 1970



Parameters

• How many keys, max?

• Memory budget? 

• One bit per address

• How many hash functions? One bit per hash function consumed per key

• Less overlap

• What false positive rate is tolerable? 

• Based upon the probabilities, we could reduce this to an equation. But, we’ll take a pass. It is 
well studied. 

• See Wikipedia for a discussion: https://en.wikipedia.org/wiki/Bloom_filter


