| 4-736:
DISTRIBUTED SYSTEMS

LECTURE 14 * SPRING 2019 * KESDEN

DIVERSION: RAIDS

* “Redundant Array of Inexpensive Disks”

* Original goal: Use cheap disks for robust bulk storage

* “Redundant Array of Independent Disks”
* Disks aren’t really differentiated by reliability anymore
* Goal: More robust
* Goal: Larger volume

* Goal: Higher throughput

* Big idea: Spread data over multiple drives in parallel to get higher throughput while using

parity for robustness.

DIVERSION: RAID LEVELS

* Raid 0: Stripe data across drives for improved * Raid 4: Blockwise parity improves

throughput performance

* No extra redundancy, elevated risk

* Raid 5: Rotating parity block among disks
* Raid |: Mirroring, parallel data to multiple devices for relieves bottleneck

robustness

- No extra throughput * Raid 6: Raid5 + dual parity.

* Raid 2: Use Hamming codes for parity " SupportsipHoREE R

* Requires log, parity bits * Slow rebuilds
* Really expensive * Raid 10:Raid | + 0
* Raid 3: Bitwise parity on parity disk. « Raid 50:Raid 5 + 0

* Requires only one parity disk for N storage disks.

* Bitwise parity is slow, dedicated parity disk is bottleneck

LUSTRE: LINUX CLUSTER

* Developed by Peter Braam, at the time a researcher at CMU

* Cluster File Systems, Inc. 2 Sun = Oracle 2 Open
* Used for high-performance clusters

* Divides and conquers like RAIDs for throughput

* Pairings for reliability

LUSTRE: LINUX CLUSTER

Management Metadata DME Metadata Object Storage Object Storage
Target (MGT) Target (MDTQ) Targets (MDT/ - MDTj) Targets (OS5Ts) Targats (OSTs)

l l]]]
I | | | | || 1

_— T T
_— i — =

s
¢

[w w S w n | o S — [w | S m— w w m— w |E m—
Management | Metadata and Additional Object Storage Object Storage
Network Managament Metadata Sarvers Servers

Servers Servars
-4 >
High Performance Data Network
(Omni-Path, InfiniBand, 100401 00GBE) | I | |
OO 0O 0O 0OOm
OO 0O 0O 0O
OO0 OO OO OO
OO0 OO OO OO

Lustre Clients (1 - 100,000+)

http://wiki.lustre.org/File:Lustre_File_System_Overview_(DNE)_lowres_vl.png

MOGILEFS

* Think about sharing sites, e.g. video, photo, etc

Uploads
No editing
Whole file delivery, no random access

Managed by software, not humans

* No need for hierarchical namespace

Protections enforced by application, not FS

Goal: Fast delivery to clients

MOGILEFS

Replicated storage

Class determines number of replicas

HTTP + MySQL for portability

Namespaces vs directory tree

* Think albums, etc.

Portable:
* User-level

* Perl implementation

* Any lower-level file system

HDEFS Architecture

Based Upon: http://hadoop.apache.org/docs/13.0.0-
alphal/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

HDFS ARCHITECTURE

GREGORY KESDEN, CSE-291 (STORAGE SYSTEMS) FALL 2017

BASED UPON: HTTP://HADOOP.APACHE.ORG/DOCS/R3.0.0-ALPHAI/HADOOP-PROJECT-DIST/HADOOP-HDFS/HDFSDESIGN.HTML

ASSUMPTIONS

* At scale, hardware failure is the norm, not the exception

* Continued availability via quick detection and work-around, and eventual automatic rull
recovery is key

* Applications stream data for batch processing
* Not designed for random access, editing, interactive use, etc

* Emphasis is on throughput, not latency

* Large data sets

* Tens of millions of files many terabytes per instance

ASSUMPTIONS, CONTINUED

* Simple Coherency Model = Lower overhead, higher throughput
* Write Once, Read Many (WORM)

* Gets rid of most concurrency control and resulting need for slow, blocking coordination

¢ “Moving computation is cheaper than moving data”
* The data is huge, the network is relatively slow, and the computation per unit of data is small.

* Moving (Migration) may not be necessary — mostly just placement of computation

* Portability, even across heterogeneous infrastructure

* At scale, things can be different, fundamentally, or as updates roll-out

OVERALL ARCHITECTURE

HDFS Architecture

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Metadata_,ops"" Namenode

Block ops
Read Datanodes Datanodes

! | |
== - = Replication E = %D
i - Jj Blocks
\ Y,
\

Rack 2

NAMENODE

Master-slave architecture

| x NameNode (coordinator)
* Manages name space, coordinates for clients
* Directory lookups and changes

* Block to DataNode mappings

Files are composed of blocks
* Blocks are stored by DataNodes

Note: User data never comes to or from a NameNode.

¢ The NameNode just coordinates

DATANODE

* Many DataNodes (participants)
* One per node in the cluster. Represent the node to the NameNode
* Manage storage attached to node
* Handles read(), write() requests, etc for clients

* Store blocks as per NameNode

* Create and Delete blocks, Replicate Blocks

NAMESPACE

* Hierarchical name space

* Directories, subdirectories, and files
* Managed by NameNode

* Maybe not needed, but low overhead
* Files are huge and processed in entirety
* Name to block lookups are rare

* Remember, model is streaming of large files for processing

* Throughput, not latency, is optimized

ACCESS MODEL

(Just to be really clear)

Read anywhere

* Streaming is in parallel across blocks across DataNodes

Write only at end (append)

Delete whole file (rare)

No edit/random write, etc

REPLICATION

* Blocks are replicated by default
* Blocks are all same size (except tail)
* Fault tolerance

* Opportunities for parallelism

* NameNode managed replication

* Based upon heartbeats, block reports (per dataNode report of available blocks), and

replication factor for file (per file metadata)

REPLICATION

Block Replication

Namenode (Filename, numReplicas, block-ids, ...)
/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, r:3, {2,4,3}, ...

Datanodes

LOCATION AWARENESS

e Site + 3-Tier Model is default

REPLICA PLACEMENT AND SELECTION

* Assume bandwidth within rack greater than outside of rack

* Default placement

* 2 nodes on same rack, one different rack (Beyond 3? Random, below replicas/rack limit)

* Fault tolerance, parallelism, lower network overhead than spreading farther

* Read from closest replica (rack, site, global)

FILESYSTEM METADATA PERSISTENCE

EditLog keeps all metadata changes.
* Stored in local host FS

FSImage keeps all FS metadata

* Also stored in local host FS

FSImage kept in memory for use
* Periodically (time interval, operation count), merges in changes and checkpoints

* Can truncate EditLog via checkpoint

Multiple copies of files can be kept for robustness
¢ Keptin sync

 Slows down, but okay given infrequency of metadata changes.

FAILURE OF DATANODES

* Disk Failure, Node Failure, Partitioning
* Detect via heartbeats (long delay, by default), blockmaps, etc

* Re-Replicate

* Corruption
* Detectable by client via checksums

* Client can determine what to do (nothing is an option)

* Metadata

DATABLOCKS, STAGING

 Data blocks are large to minimize overhead for large files

* Staging
* Initial creation and writes are cached locally and delayed, request goes to NameNode when |+
chunk is full.
* Local caching is intended to support use of memory hierarchy and throughput needed for

streaming. Don’t want to block for remote end.

* Replication is from replica to replica, “Replication pipeline”

* Maximizes client’s ability to stream

