
14-736:
DISTRIBUTED SYSTEMS
LECTURE 14 * SPRING 2019 * KESDEN



DIVERSION: RAIDS

• “Redundant Array of Inexpensive Disks”

• Original goal: Use cheap disks for robust bulk storage

• “Redundant Array of Independent Disks”

• Disks aren’t really differentiated by reliability anymore

• Goal: More robust

• Goal: Larger volume

• Goal: Higher throughput

• Big idea: Spread data over multiple drives in parallel to get higher throughput while using 

parity for robustness. 



DIVERSION: RAID LEVELS

• Raid 0: Stripe data across drives for improved 

throughput

• No extra redundancy, elevated risk

• Raid 1: Mirroring, parallel data to multiple devices for 

robustness

• No extra throughput

• Raid 2: Use Hamming codes for parity

• Requires log2 parity bits

• Really expensive

• Raid 3: Bitwise parity on parity disk. 

• Requires only one parity disk for N storage disks.

• Bitwise parity is slow, dedicated parity disk is bottleneck

• Raid 4: Blockwise parity improves 

performance

• Raid 5: Rotating parity block among disks 

relieves bottleneck

• Raid 6: Raid5 + dual parity. 

• Supports up to 2 HDD failures

• Slow rebuilds

• Raid 10: Raid 1 + 0

• Raid 50: Raid 5 + 0



LUSTRE: LINUX CLUSTER

• Developed by Peter Braam, at the time a researcher at CMU

• Cluster File Systems, Inc. → Sun → Oracle → Open

• Used for high-performance clusters

• Divides and conquers like RAIDs for throughput

• Pairings for reliability



LUSTRE: LINUX CLUSTER

http://wiki.lustre.org/File:Lustre_File_System_Overview_(DNE)_lowres_v1.png



MOGILEFS

• Think about sharing sites, e.g. video, photo, etc

• Uploads

• No editing

• Whole file delivery, no random access

• Managed by software, not humans

• No need for hierarchical namespace

• Protections enforced by application, not FS

• Goal: Fast delivery to clients



MOGILEFS

• Replicated storage

• Class determines number of replicas

• HTTP + MySQL for portability

• Namespaces vs directory tree

• Think albums, etc.

• Portable:

• User-level

• Perl implementation

• Any lower-level file system



HDFS Architecture

Based Upon: http://hadoop.apache.org/docs/r3.0.0-

alpha1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html



HDFS ARCHITECTURE
GREGORY KESDEN, CSE-291 (STORAGE SYSTEMS) FALL 2017

BASED UPON: HTTP://HADOOP.APACHE.ORG/DOCS/R3.0.0-ALPHA1/HADOOP-PROJECT-DIST/HADOOP-HDFS/HDFSDESIGN.HTML



ASSUMPTIONS

• At scale, hardware failure is the norm, not the exception

• Continued availability via quick detection and work-around, and eventual automatic rull

recovery is key

• Applications stream data for batch processing

• Not designed for random access, editing, interactive use, etc

• Emphasis is on throughput, not latency

• Large data sets

• Tens of millions of files many terabytes per instance



ASSUMPTIONS, CONTINUED

• Simple Coherency Model = Lower overhead, higher throughput

• Write Once, Read Many (WORM)

• Gets rid of most concurrency control and resulting need for slow, blocking coordination

• “Moving computation is cheaper than moving data”

• The data is huge, the network is relatively slow, and the computation per unit of data is small.

• Moving (Migration) may not be necessary – mostly just placement of computation 

• Portability, even across heterogeneous infrastructure

• At scale, things can be different, fundamentally, or as updates roll-out



OVERALL ARCHITECTURE



NAMENODE

• Master-slave architecture

• 1x NameNode (coordinator)

• Manages name space, coordinates for clients

• Directory lookups and changes

• Block to DataNode mappings

• Files are composed of blocks

• Blocks are stored by DataNodes

• Note: User data never comes to or from a NameNode. 

• The NameNode just coordinates



DATANODE

• Many DataNodes (participants)

• One per node in the cluster. Represent the node to the NameNode

• Manage storage attached to node

• Handles read(), write() requests, etc for clients

• Store blocks as per NameNode

• Create and Delete blocks, Replicate Blocks



NAMESPACE

• Hierarchical name space

• Directories, subdirectories, and files

• Managed by NameNode

• Maybe not needed, but low overhead

• Files are huge and processed in entirety

• Name to block lookups are rare

• Remember, model is streaming of large files for processing

• Throughput, not latency, is optimized



ACCESS MODEL

• (Just to be really clear)

• Read anywhere

• Streaming is in parallel across blocks across DataNodes

• Write only at end (append)

• Delete whole file (rare)

• No edit/random write, etc



REPLICATION

• Blocks are replicated by default

• Blocks are all same size (except tail)

• Fault tolerance

• Opportunities for parallelism

• NameNode managed replication

• Based upon heartbeats, block reports (per dataNode report of available blocks), and 

replication factor for file (per file metadata)



REPLICATION



LOCATION AWARENESS

• Site + 3-Tier Model is default



REPLICA PLACEMENT AND SELECTION

• Assume bandwidth within rack greater than outside of rack

• Default placement

• 2 nodes on same rack, one different rack (Beyond 3? Random, below replicas/rack limit)

• Fault tolerance, parallelism, lower network overhead than spreading farther

• Read from closest replica (rack, site, global)



FILESYSTEM METADATA PERSISTENCE

• EditLog keeps all metadata changes.

• Stored in local host FS

• FSImage keeps all FS metadata 

• Also stored in local host FS

• FSImage kept in memory for use

• Periodically (time interval, operation count), merges in changes and checkpoints

• Can truncate EditLog via checkpoint

• Multiple copies of files can be kept for robustness

• Kept in sync

• Slows down, but okay given infrequency of metadata changes.



FAILURE OF DATANODES

• Disk Failure, Node Failure, Partitioning

• Detect via heartbeats (long delay, by default), blockmaps, etc

• Re-Replicate

• Corruption

• Detectable by client via checksums

• Client can determine what to do (nothing is an option)

• Metadata



DATABLOCKS, STAGING

• Data blocks are large to minimize overhead for large files

• Staging

• Initial creation and writes are cached locally and delayed, request goes to NameNode when 1st

chunk is full.

• Local caching is intended to support use of memory hierarchy and throughput needed for 

streaming. Don’t want to block for remote end. 

• Replication is from replica to replica, “Replication pipeline” 

• Maximizes client’s ability to stream


