Carnegie Mellon

Recitation 14: Proxy Lab Part 2

Instructor: TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Outline

m Proxylab
m Threading
m Threads and Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

ProxyLab

m ProxylLab is due in 1 week.
= No grace days

" Make sure to submit well in advance of the deadline in case there
are errors in your submission.

" Build errors are a common source of failure

m A proxy is a server process
" |tis expected to be long-lived
= To not leak resources
= To be robust against user input

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Proxies and Threads

m Network connections can be handled concurrently
" Three approaches were discussed in lecture for doing so
= Your proxy should (eventually) use threads
" Threaded echo server is a good example of how to do this

m Multi-threaded cache design
"= Need to have multiple readers or one writer

= Be careful how you use mutexes — you do not want to serialize your
readers

= Be careful how you maintain your object age

m Tools

= Use Firefox’s Network Monitor (Developer > Network) to see if all
requests have been fulfilled

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Join / Detach

m Does the following code terminate? Why or why not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL);
if (pthread join(tid, NULL) '= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detatch(pthread self());

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Join / Detach cont.

m Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(1l);
if (pthread join(tid, NULL) !'= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach(pthread self());

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

When should threads detach?

m In general, pthreads will wait to be reaped via
pthread_join.

m When should this behavior be overridden?

m When termination status does not matter.
= pthread_join provides a return value

m When result of thread is not needed.

= When other threads do not depend on this thread having
completed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Threads

m What is the range of value(s) that main will print?

m A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count = 0; int main(int argc, char** argv)

void* thread (void* v) { pthread t tid[2];

t for(int i = 0; i < 2; i++)
int j = count; pthread create(&tid[i], NULL,
J=J t ¥f - thread, NULL) ;
count = j;

) for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“%$d\n”, count);
return O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Synchronization

m Is not cheap
= 100s of cycles just to acquire without waiting

m Is also not that expensive
= Recall your malloc target of 15000kops => ~100 cycles

m May be necessary
= Correctness is always more important than performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Which synchronization should | use?

m Counting a shared resource, such as shared buffers
= Semaphore

m Exclusive access to one or more variables
= Mutex

m Most operations are reading, rarely writing / modifying
= RWLock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Threads Revisited

m Which lock type should be used?
m Where should it be acquired / released?

volatile int count = 0; int main(int argc, char** argv)

void* thread (void* v) { pthread t tid[2];

«t for(int i = 0; i < 2; i++)
int j = count; pthread create(&tid[i], NULL,
] = J t ¥f B thread, NULL);
count = j;

) for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“%$d\n”, count);
return O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Associating locks with data

m Given the following key-value store
= Key and value have separate RWLocks: klock and vlock

= When an entry is replaced, both locks are acquired.

m Describe why the printf may not be accurate.

typedef struct data t {
int key;
size t value;

pthread rwlock rdlock (klock) ;
match = search(k);

} data t; pthread rwlock unlock (klock) ;
] 1= -
#define SIZE 10 if (match 1= -1)
data t space[SIZE]; {
int ;éarch(int k) pthread rwlock rdlock(vlock);
(printf (“%$zd\n”, space[match]) ;
for(int § = 0; j < SIZE; j++) pthread rwlock unlock(vlock);
if (space[j].key == k) return j; 1

return -1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Locks gone wrong

1. RWLocks are particularly susceptible to which issue:

a. b. Livelock c. Deadlock

1. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What, if
any, order can a writer acquire both LockA and LockB?

No order is possible without a potential deadlock.

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Client-to-Client Communication

m Clients don’t have to fetch content from servers
= Clients can communicate with each other
" |n a chat system, a server acts as a facilitator between clients

= Clients could also send messages directly to each other, but this is
more complicated (peer-to-peer networking)

m Running the chat server
" _/chatserver <port>

m Running the client
" telnet <hostname> <port>

m What race conditions could arise from having
communication between multiple clients?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Proxylab Reminders

m Plan out your implementation

= “Weeks of programming can save you hours of planning”
" — Anonymous

= Arbitrarily using mutexes will not fix race conditions

m Read the writeup

m Submit your code (days) early

= Test that the submission will build and run on Autolab

m Final exam is only a few weeks away!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Appendix

m Calling exit() will terminate all threads

m Calling pthread_join on a detached thread is technically
undefined behavior. Was defined as returning an error.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

