
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 11: More Malloc Lab

Instructor: TA(s)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Your Code

 Sketch out the heap

 Add Instrumentation

 Use tools

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Start with a heap, in this case implicit list

 Now try something, in this case, extend_heap
block_t *block = payload_to_header(bp);

write_header(block, size, false);

write_footer(block, size, false);

// Create new epilogue header

block_t *block_next = find_next(block);

write_header(block_next, 0, true);

4 4 4 4 6 46 40 00

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Here is a free block based on lectures 19 and 20
▪ Explicit pointers (will be well-defined see writeup and Piazza)

▪ This applies to ALL new fields you want inside your struct

▪ Optional boundary tags

 If you make changes to your design beyond this
▪ Draw it out.

▪ If you have bugs, pictures can help the staff help you

▪ Put a picture of your data structure into your file header
(optional, but we will be impressed)

Size

Unallocated

b0

Size b0

1 word

Free
Block

Next

Prev

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Problems

 Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: ??

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Problems

 Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: Instrument your code!

 Utilization is very low / Out of Memory
▪ Which operation can cause you to allocate more memory than you

may need?

▪ Hint: It extends the amount of memory that you have!

▪ Solution: ??

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Problems

 Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: Instrument your code!

 Utilization is very low / Out of Memory
▪ Which operation can cause you to allocate more memory than you

may need?

▪ Hint: It extends the amount of memory that you have!

▪ Solution: Instrument your code!

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation

 Remember that measurements inform insights.
▪ Add temporary code to understand aspects of malloc

▪ Code can violate style rules or 128 byte limits, because it is
temporary

 Particularly important to develop insights into
performance before making changes
▪ What is expensive throughput-wise?

▪ How much might a change benefit utilization?

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation example

 Searching in find_fit is often the slowest step

 How efficient is your code? How might you know?
▪ Compute the ratio of blocks viewed to calls

static block_t *find_fit(size_t asize)

{

block_t *block;

for (block = heap_listp; get_size(block) > 0;

block = find_next(block))

{

if (!(get_alloc(block)) && (asize <= get_size(block)))

{

return block;

}

}

return NULL; // no fit found

}

call_count++;

block_count++;

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation cont.

 What size of requests?
▪ How many 8 bytes or less?

▪ How many 16 bytes or less?

▪ What other sizes?

 What else could you measure? Why?

 Remember that although the system’s performance
varies
▪ The mdriver’s traces are deterministic

▪ Measured results should not change between runs

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use tools

 Use mm_checkheap()
▪ Write it if you haven’t done so already

▪ Add new invariants when you add new features

▪ Know how to use the heap checker.

▪ Why do you need a heap checker? 2 reasons.

 Use gdb
▪ You can call print or mm_checkheap whenever you want in gdb. No

need to add a while lot of printf’s.

▪ Offers useful information whenever you crash, like backtrace.

▪ Write helper functions to print out free lists that are ONLY called
from GDB

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mdriver-emulate

 Testing for 64-bit address space

 Use correctly sized masks, constants, and other variables

 Be careful about subtraction between size types (may re
result in underflow/overflow)

 Reinitialize your pointers in mm_init

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes

 Malloc library returns a block
▪ mdriver writes bytes into payload (using memcpy)

▪ mdriver will check that those bytes are still present

▪ If malloc library has overwritten any bytes, then report garbled bytes

▪ Also checks for other kinds of bugs

 Now what?

 The mm_checkheap call is catching it right?

 If not, we want to find the garbled address and watch it

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes and gdb

 Get out a laptop

 Login to shark machine

 wget http://www.cs.cmu.edu/~213/activities/rec11b.tar

 tar xf rec11b.tar

 mm.c is a fake explicit list implementation.
▪ Source code is based on mm_baseline.c

▪ A few lines of code are added that vaguely resembles what an
explicit list implementation could have.

http://www.cs.cmu.edu/~213/activities/rec11b.tar

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Exercise

 gdb --args ./mdriver -c ./traces/syn-array-short.rep -D

(gdb) r

// Sample output follows

Throughput targets: min=6528, max=11750, benchmark=13056

Malloc size 9904 on address 0x800000010.

...

ERROR [trace ././traces/syn-array-short.rep, line 12]:

block 0 has 8 garbled bytes, starting at byte 0

...

Terminated with 2 errors

[Inferior 1 (process 13470) exited normally]

(gdb)

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Exercise cont.

 What is the first address that was garbled?
▪ Use gdb watch to find out when / what garbled it.

(gdb) watch * 0x800000010

(gdb) run

// Keep continuing through the breaks:

// mm_init()

// 4 x memcpy

Hardware watchpoint 1: *0x800000010

Old value = -7350814

New value = 9928

mm_malloc (size=50084) at mm.c:214

We just broke in
after overwriting

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Second Exercise

Well fine, the bug from the first exercise was very artificial.
No one just sets bytes to 0 for no reason.

Try this more plausible exercise:

$ gdb --args ./mdriver-2 -c traces/syn-array-short.rep

What error was printed to the console?

The function that prints the error is named
malloc_error. Add a breakpoint for it if you want.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Second Exercise

The library must’ve written the header and footer for the
out-of-bounds payload at some point. Add a watchpoint for
either address, or both.
(gdb) watch * 0x8000036c8

(gdb) run

…So, the writes occurred in place. Is the place function
wrong, or was it just given a bad argument?

Hint: the bug is found in at basically the same place as last
recitation’s bug.

It’s caused by a careless typo, like nearly all others bugs.

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tips for using our tools

 Run mdriver with the –D option to detect garbled bytes as
early as possible. Run it with –V to find out which trace
caused the error.

 Note that sometimes, you get the error within the first
few allocations. If so, you could set a breakpoint for
mm_malloc / mm_free and step though every line.

 Print out local variables and convince yourself that they
have the right values.

 For mdriver-emulate, you can still read memory from the
simulated 64-bit address space using
mem_read(address, 8) instead of x /gx.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MallocLab

 Due Thursday

 7% of final grade (+ 4% for checkpoint)
▪ Style matters! Don’t let all of your hard work get wasted.

▪ There are many different implementations and TAs will need to
know the details behind your implementation.

 Read the writeup. It even has a list of tips on how to
improve memory utilization.

 Rubber duck method
▪ If you explain to a rubber duck / TA what your function does step-

by-step, while occasionally stopping to explain why you need each
of those steps, you’d may very well find the bug in the middle of
your explanation.

▪ Remember the “debug thought process” slide from Recitation 10?

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Style

 Well organized code is easier to debug and easier to grade!
▪ Modularity: Helper functions to respect the list interface.

▪ Documentation:

▪ File Header: Describes all implementation details, including
block structures.

▪ Checkheap: Describes all checks implemented.

▪ Code Structure:

▪ Minimal-to-no pointer arithmetic.

▪ Loops instead of conditionals, where appropriate.

