
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 9: Tshlab + VM

Instructor: TAs

29 October 2018

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Labs

 Signals

 IO

 Virtual Memory

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

tshlab and malloclab

 tshlab due Tuesday

 malloclab is released immediately after
 Start early

 Do the checkpoint first, don’t immediately go for the final

 Expect a recitation next week

 Working for several hours will improve the value significantly

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

 Parent process sends SIGINT to a child process.
What is the behavior of the child?

 What is the default?

 What else could the child do?

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Signals

 Parent process sends SIGKILL to a child process.
What is the behavior of the child?

 What is the default?

 What else could the child do?

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals

 Parent sends SIGKILL to a child process.

...

 pid_t pid = ...; // child pid

 kill(pid, SIGKILL);

 // At this point, what could have

 // happened to the child process?

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Signals

 The shell is currently running its handler for SIGCHLD.

 What signals can it receive?

 What signals can it not receive (i.e., blocked)?

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Errno

 Included from <errno.h>

 Global integer variable – usually 0

 When a system call fails (usually indicated by returning
-1), it also will set errno to a value describing what went
wrong

 Example: let’s assume there is no “foo.txt” in our path
int fd = open(”foo.txt”, O_RDONLY);

if(fd < 0) printf(“%d¥n”, errno);

 The code above will print 2 – in the man pages, we can
see that 2 is ENOENT “No such file or directory”

 In shell lab, your signal handlers must preserve errno

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IO functions

Needed for tshlab
 int open(const char *pathname, int flags);

 Some important flags:

 O_CREAT – creates file if needed, opens for read/write

 O_RDWR – opens for read/write

 O_RDONLY – opens for read only

 Various permission modes

 int close(int fd);

 int dup2(int oldfd, int newfd);

Needed for life
 ssize_t read(int fd, void *buf, size_t count);

 ssize_t write(int fd, const void *buf,

size_t count);

 off_t lseek(int fd, off_t offset, int whence);

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More on open

 int open(const char *pathname,
 int flags, mode_t mode);

 For flags, you can pass a bitwise-OR of one or more
flags

 Three kinds of flags (we only discuss the important ones)
 Access modes (one of them must be included):

 O_RDONLY, O_WRONLY, O_RDWR

 File creation flags:

 O_CREAT, O_TRUNC, etc.

 File status flags

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Access mode flags and file creation flags

 O_RDONLY
 Open the file read-only.

 O_WRONLY
 Open the file write-only.

 O_RDWR
 Open the file read/write.

 O_CREAT
 If the provided pathname does not exist, create it as a regular file.

 O_TRUNC
 If the file already exists and if the access mode allows writing (i.e. is

O_RDWR or O_WRONLY), then the file will be truncated to length
0.

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More on open

 int open(const char *pathname,
 int flags, mode_t mode);

 For mode, you can pass a bitwise-OR of one or more
constants

 Specifies, when creating a file, what permission the file
will be created with

 Only useful when flags contain O_CREAT (or
O_TMPFILE)

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux permissions

 Every file and directory has permission information

 You’ve seen it before
 ls -l prints the permissions for each file/directory like:

-rw-r--r-- ... drwxr-xr-x ...

 chmod changes the permissions for files/directories

 $ chmod -R 777 /

 There are read (R), write (W) and executable (X)
permissions for user (USR), group (GRP) and other (OTH)

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Specify permissions in open()

 These constants can be bitwise-OR’d and passed to the
third argument of open()

 What does S_IRWXG | S_IXUSR | S_IXOTH mean?

 How to create a file which everyone can read from but
only the user can write to it or execute it?

Read (R) Write (W) Executable (X) All (RWX)

User (USR) S_IRUSR S_IWUSR S_IXUSR S_IRWXU

Group (GRP) S_IRGRP S_IWGRP S_IXGRP S_IRWXG

Other (OTH) S_IROTH S_IWOTH S_IXOTH S_IRWXO

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File descriptors

fd

0

1

2

open file table

Standard input

Standard output

Standard error stdin, stdout, stderr are
opened automatically
and closed by normal
termination or exit()

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

open(“foo.txt”)

fd

0

1

2

3 open file table

Standard input

Standard output

Standard error

foo.txt

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

open(“foo.txt”)

fd

0

1

2

3

4
open file table

Standard input

Standard output

Standard error

foo.txt

foo.txt
Each call to open()

creates a new open file
description

inode table

foo.txt

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

dup2(STDOUT_FILENO, 3)

fd

0

1

2

3

4
open file table

Standard input

Standard output

Standard error

foo.txt
Closed silently

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IO and Fork()

 File descriptor management can be tricky.

 How many file descriptors are open in the parent process at the
indicated point?

 How many does each child have open at the call to execve?

int main(int argc, char** argv)

{

 int i;

 for (i = 0; i < 4; i++)

 {

 int fd = open(“foo”, O_RDONLY);

 pid_t pid = fork();

 if (pid == 0)

 {

 int ofd = open(“bar”, O_RDONLY);

 execve(...);

 }

 }

 // How many file descriptors are open in the parent?

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Redirecting IO

 File descriptors can be directed to identify different open
files.

int main(int argc, char** argv) {

 int i;

 for (i = 0; i < 4; i++)

 {

 int fd = open(“foo”, O_RDONLY);

 pid_t pid = fork();

 if (pid == 0)

 {

 int ofd = open(“bar”, O_WRONLY);

 dup2(fd, STDIN_FILENO);

 dup2(ofd, STDOUT_FILENO);

 execve(...);

 }

 }

 // How many file descriptors are open in the parent?

}

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Redirecting IO

 At the two points (A and B) in main, how many file
descriptors are open?

int main(int argc, char** argv)

{

 int i, fd;

 fd = open(“foo”, O_WRONLY);

 dup2(fd, STDOUT_FILENO);

 // Point A

 close(fd);

 // Point B

 ...

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Access

 The processor tries to write to a memory address.

 List different steps that are required to complete this
operation.

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Access

 The processor tries to write to a memory address.

 List different steps that are required to complete this
operation. (non exhaustive list)

 Virtual to physical address conversion (TLB lookup)

 TLB miss

 Page fault, page loaded from disk

 TLB updated, check permissions

 L1 Cache miss (and L2 … and)

 Request sent to memory

 Memory sends data to processor

 Cache updated

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation with TLB

 Translate 0x15213, given the contents of the TLB and the first 32
entries of the page table below.

 1MB Virtual Memory
256KB Physical Memory
4KB page size

Index Tag PP

N

Valid

0 05 13 1

3F 15 1

1 10 0F 1

0F 1E 0

2 1F 01 1

11 1F 0

3 03 2B 1

1D 23 0

VPN PPN Valid VPN PPN Valid

00 17 1 10 26 0

01 28 1 11 17 0

02 14 1 12 0E 1

03 0B 0 13 10 1

04 26 0 14 13 1

05 13 0 15 18 1

06 0F 1 16 31 1

07 10 1 17 12 0

08 1C 0 18 23 1

09 25 1 19 04 0

0A 31 0 1A 0C 1

0B 16 1 1B 2B 0

0C 01 0 1C 1E 0

0D 15 0 1D 3E 1

0E 0C 0 1E 27 1

0F 2B 1 1F 15 1

2-way
set

associative

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If you get stuck on tshlab

 Read the writeup!

 Do manual unit testing before runtrace and sdriver!

 Post private questions on piazza!

 Read the man pages on the syscalls.
 Especially the error conditions

 What errors should terminate the shell?

 What errors should be reported?

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

man wait
Taken from http://man7.org/linux/man-pages/man2/wait.2.html

WAIT(2) Linux Programmer's Manual WAIT(2)

NAME

 wait, waitpid, waitid - wait for process to change state

SYNOPSIS

 #include <sys/types.h>
 #include <sys/wait.h>

 pid_t wait(int *wstatus);

 pid_t waitpid(pid_t pid, int *wstatus, int options);

 int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);
 /* This is the glibc and POSIX interface; see
 NOTES for information on the raw system call. */

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

man pages (probably) cover all you need

 What arguments does the function take?
 read SYNOPSIS

 What does the function do?
 read DESCRIPTION

 What does the function return?
 read RETURN VALUE

 What errors can the function fail with?
 read ERRORS

 Is there anything I should watch out for?
 read NOTES

 Different categories for man page entries with the same
name

 Looking up man pages online is not an academic integrity
violation

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Function arguments

 Should I do dup2(old, new) or dup2(new, old)?

 Read the man page:

$ man dup2

SYNOPSIS

 #include <unistd.h>

 int dup(int oldfd);

 int dup2(int oldfd, int newfd);

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Function behavior

 How should I write my format string when I need to print
a long double in octals with precision 5 and zero-padded?

 Read the man page:

$ man printf

DESCRIPTION

Flag characters

 The character % is followed by zero or more of the following flags:

 # The value should be converted...

 0 The value should be zero padded...

 - The converted value is to be left adjusted...

 ' ' (a space) A blank should be left before...

 + A sign (+ or -) should always ...

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Function return

 What does waitpid() return with and without
WNOHANG?

 Read the man page:

$ man waitpid

RETURN VALUE

 waitpid(): on success, returns the process ID of the child whose

 state has changed; if WNOHANG was specified and one or more

 child(ren) specified by pid exist, but have not yet changed state,

 then 0 is returned. On error, -1 is returned.

 Each of these calls sets errno to an appropriate value in the case of

 an error.

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Potential errors

 How should I check waitpid for errors?

 Read the man page:

$ man waitpid

ERRORS

 ECHILD (for waitpid() or waitid()) The process specified by pid

 (waitpid()) or idtype and id (waitid()) does not exist or is

 not a child of the calling process. (This can happen for

 one's own child if the action for SIGCHLD is set to SIG_IGN.

 See also the Linux Notes section about threads.)

 EINTR WNOHANG was not set and an unblocked signal or a SIGCHLD was

 caught; see signal(7).

 EINVAL The options argument was invalid.

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Get advice from the developers

 I sprintf from a string into itself, is this okay?

 Read the man page:

$ man sprintf

NOTES

 Some programs imprudently rely on code such as the following

 sprintf(buf, "%s some further text", buf);

 to append text to buf. However, the standards explicitly note that
 the results are undefined if source and destination buffers overlap
 when calling sprintf(), snprintf(), vsprintf(), and vsnprintf().
 Depending on the version of gcc(1) used, and the compiler options
 employed, calls such as the above will not produce the expected
 results.

 The glibc implementation of the functions snprintf() and vsnprintf()
 conforms to the C99 standard, that is, behaves as described above,
 since glibc version 2.1. Until glibc 2.0.6, they would return -1
 when the output was truncated.

