
Andrew login ID:

Full Name:

CS 15-213, Fall 2001

Exam 1
October 9, 2001

Instructions:

� Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID
on the front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of 64 points.

� The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

� This exam is OPEN BOOK. You may use any books or notes you like. You may use a calculator, but
no laptops or other wireless devices. Good luck!
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Problem 1. (9 points):
Assume we are running code on a

�
-bit machine using two’s complement arithmetic for signed integers. A

“short” integer is encoded using � bits. Fill in the empty boxes in the table below. The following definitions
are used in the table:

short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;

Note: You need not fill in entries marked with “–”.

Expression Decimal Representation Binary Representation

Zero �

– � �

– 01 0010

���

�

�	�
���

TMax

� TMin

TMin  TMin
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Problem 2. (12 points):
Consider the following � -bit floating point representation based on the IEEE floating point format:

� There is a sign bit in the most significant bit.

� The next 3 bits are the exponent. The exponent bias is ������� � �	� � .
� The last 4 bits are the fraction.

� The representation encodes numbers of the form: 
 ��� � �������� � ��� , where � is the significand
and � is the biased exponent.

The rules are like those in the IEEE standard(normalized, denormalized, representation of � , infinity, and
NAN). FILL in the table below. Here are the instructions for each field:

� Binary: The 8 bit binary representation.

� M: The value of the significand. This should be a number of the form � or � � , where � is an integer,

and � is an integral power of � . Examples include � , �� .
� E: The integer value of the exponent.

� Value:The numeric value represented.

Note: you need not fill in entries marked with ”—”.

Description Binary � � Value

Minus zero � ��� �

— 0 100 0101

Smallest denormalized (negative)

Largest normalized (positive)

One � � �

— 5.5

Positive infinity — — ��
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Problem 3. (3 points):
Consider the following C functions and assembly code:
int fun7(int a)
{

return a * 30;
}

int fun8(int a)
{

return a * 34;
}

int fun9(int a)
{

return a * 18;
}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
sall $4,%eax
addl 8(%ebp),%eax
addl %eax,%eax
movl %ebp,%esp
popl %ebp
ret

Which of the functions compiled into the assembly code shown?

Problem 4. (3 points):
Consider the following C functions and assembly code:
int fun4(int *ap, int *bp)
{

int a = *ap;
int b = *bp;
return a+b;

}

int fun5(int *ap, int *bp)
{

int b = *bp;
*bp += *ap;
return b;

}

int fun6(int *ap, int *bp)
{

int a = *ap;
*bp += *ap;
return a;

}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
movl 12(%ebp),%eax
movl %ebp,%esp
movl (%edx),%edx
addl %edx,(%eax)
movl %edx,%eax
popl %ebp
ret

Which of the functions compiled into the assembly code shown?
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Problem 5. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int array1[M][N];
int array2[N][M];

int copy(int i, int j)
{

array1[i][j] = array2[j][i];
}

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%ebx
leal (%ecx,%ecx,8),%edx
sall $2,%edx
movl %ebx,%eax
sall $4,%eax
subl %ebx,%eax
sall $2,%eax
movl array2(%eax,%ecx,4),%eax
movl %eax,array1(%edx,%ebx,4)
popl %ebx
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =
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Problem 6. (8 points):
Consider the following assembly representation of a function foo containing a for loop:

foo:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ebx
leal 2(%ebx),%edx
xorl %ecx,%ecx
cmpl %ebx,%ecx
jge .L4

.L6:
leal 5(%ecx,%edx),%edx
leal 3(%ecx),%eax
imull %eax,%edx
incl %ecx
cmpl %ebx,%ecx
jl .L6

.L4:
movl %edx,%eax
popl %ebx
movl %ebp,%esp
popl %ebp
ret

Fill in the blanks to provide the functionality of the loop:

int foo(int a)�

int i;
int result = _____________;

for( ________; ________; i++ )
�

__________________;

__________________;

�

return result;�
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Problem 7. (9 points):
Consider the following C declarations:

typedef struct {
short code;
long start;
char raw[3];
double data;

} OldSensorData;

typedef struct {
short code;
short start;
char raw[5];
short sense;
short ext;
double data;

} NewSensorData;

A. Using the templates below (allowing a maximum of 24 bytes), indicate the allocation of data for
structs of type OldSensorDataNewSensorData. Mark off and label the areas for each individ-
ual element (arrays may be labeled as a single element). Cross hatch the parts that are allocated,
but not used (to satisfy alignment).

Assume the Linux alignment rules discussed in class. Clearly indicate the right hand boundary of
the data structure with a vertical line.

OldSensorData:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

NewSensorData:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
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B. Now consider the following C code fragment:

void foo(OldSensorData *oldData)
{

NewSensorData *newData;

/* this zeros out all the space allocated for oldData */
bzero((void *)oldData, sizeof(oldData));

oldData->code = 0x104f;
oldData->start = 0x80501ab8;
oldData->raw[0] = 0xe1;
oldData->raw[1] = 0xe2;
oldData->raw[2] = 0x8f;
oldData->raw[-5] = 0xff;
oldData->data = 1.5;

newData = (NewSensorData *) oldData;

...

Once this code has run, we begin to access the elements of newData. Below, give the value of each
element of newData that is listed. Assume that this code is run on a Little-Endian machine such
as a Linux/x86 machine. You must give your answer in hexadecimal format. Be careful about byte
ordering!.

(a) newData->start = 0x________________

(b) newData->raw[0] = 0x________________

(c) newData->raw[2] = 0x________________

(d) newData->raw[4] = 0x________________

(e) newData->sense = 0x________________
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The next problem concerns the following C code. This program reads a string on standard input and prints
an integer in hexadecimal format based on the input string it read.

#include <stdio.h>

/* Read a string from stdin into buf */
int evil_read_string()
{

int buf[2];

scanf("%s",buf);
return buf[1];

}

int main()
{

printf("0x%x\n", evil_read_string());
}

Here is the corresponding machine code on a Linux/x86 machine:

08048414 <evil_read_string>:
8048414: 55 push %ebp
8048415: 89 e5 mov %esp,%ebp
8048417: 83 ec 14 sub $0x14,%esp
804841a: 53 push %ebx
804841b: 83 c4 f8 add $0xfffffff8,%esp
804841e: 8d 5d f8 lea 0xfffffff8(%ebp),%ebx
8048421: 53 push %ebx address arg for scanf

8048422: 68 b8 84 04 08 push $0x80484b8 format string for scanf

8048427: e8 e0 fe ff ff call 804830c <_init+0x50> call scanf

804842c: 8b 43 04 mov 0x4(%ebx),%eax
804842f: 8b 5d e8 mov 0xffffffe8(%ebp),%ebx
8048432: 89 ec mov %ebp,%esp
8048434: 5d pop %ebp
8048435: c3 ret

08048438 <main>:
8048438: 55 push %ebp
8048439: 89 e5 mov %esp,%ebp
804843b: 83 ec 08 sub $0x8,%esp
804843e: 83 c4 f8 add $0xfffffff8,%esp
8048441: e8 ce ff ff ff call 8048414 <evil_read_string>
8048446: 50 push %eax integer arg for printf

8048447: 68 bb 84 04 08 push $0x80484bb format string for printf

804844c: e8 eb fe ff ff call 804833c <_init+0x80> call printf

8048451: 89 ec mov %ebp,%esp
8048453: 5d pop %ebp
8048454: c3 ret
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Problem 8. (12 points):
This problem tests your understanding of the stack discipline and byte ordering. Here are some notes to
help you work the problem:

� scanf("%s", buf) reads an input string from the standard input stream (stdin) and stores it at
address buf (including the terminating ’\0’ character). It does not check the size of the destination
buffer.

� printf("0x%x", i) prints the integer i in hexadecimal format preceded by “0x”.

� Recall that Linux/x86 machines are Little Endian.

� You will need to know the hex values of the following characters:

Character Hex value Character Hex value

’d’ 0x64 ’v’ 0x76
’r’ 0x72 ’i’ 0x69
’.’ 0x2e ’l’ 0x6c
’e’ 0x65 ’\0’ 0x00

’s’ 0x73

A. Suppose we run this program on a Linux/x86 machine, and give it the string “dr.evil” as input on
stdin.

Here is a template for the stack, showing the locations of buf[0] and buf[1]. Fill in the value of
buf[1] (in hexadecimal) and indicate where ebp points just after scanf returns to evil read string.

|<- buf[0]->|<-buf[1] ->|
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| | | | | | | | | | | | | | | | | | | | |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

What is the 4-byte integer (in hex) printed by the printf inside main?

0x_____________________
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B. Suppose now we give it the input “dr.evil.lives” (again on a Linux/x86 machine).

(a) List the contents of the following memory locations just after scanf returns to evil read string.
Each answer should be an unsigned 4-byte integer expressed as 8 hex digits.

buf[0] = 0x____________________

buf[3] = 0x____________________

(b) Immediately before the ret instruction at address 0x08048435 executes, what is the value
of the frame pointer register %ebp?

%ebp = 0x____________________

You can use the following template of the stack as scratch space. Note: this does not have to be filled out
to receive full credit.

<- buf[0] -><- buf[1] ->
--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--

| | | | | | | | | | | | | | | | | | | | | | | | |
--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--
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