

Thread-Level Parallelism

15-213 / 18-213 / 14-513 / 15-513: Introduction to Computer Systems 26th Lecture, November 27, 2018

Today

Parallel Computing Hardware

- Multicore
 - Multiple separate processors on single chip
- Hyperthreading
 - Efficient execution of multiple threads on single core

Consistency Models

• What happens when multiple threads are reading & writing shared state

Thread-Level Parallelism

- Splitting program into independent tasks
 - Example: Parallel summation
 - Examine some performance artifacts
- Divide-and conquer parallelism
 - Example: Parallel quicksort

Typical Multicore Processor

Multiple processors operating with coherent view of memory

Out-of-Order Processor Structure

- Instruction control dynamically converts program into stream of operations
- Operations mapped onto functional units to execute in parallel

Hyperthreading Implementation

- Replicate instruction control to process K instruction streams
- K copies of all registers
- Share functional units

Benchmark Machine

Get data about machine from /proc/cpuinfo

Shark Machines

- Intel Xeon E5520 @ 2.27 GHz
- Nehalem, ca. 2010
- 8 Cores
- Each can do 2x hyperthreading

Exploiting parallel execution

So far, we've used threads to deal with I/O delays

- e.g., one thread per client to prevent one from delaying another
- Multi-core CPUs offer another opportunity
 - Spread work over threads executing in parallel on N cores
 - Happens automatically, if many independent tasks
 - e.g., running many applications or serving many clients
 - Can also write code to make one big task go faster
 - by organizing it as multiple parallel sub-tasks

Shark machines can execute 16 threads at once

- 8 cores, each with 2-way hyperthreading
- Theoretical speedup of 16X
 - never achieved in our benchmarks

Memory Consistency

- What are the possible values printed?
 - Depends on memory consistency model
 - Abstract model of how hardware handles concurrent accesses

Non-Coherent Cache Scenario

Write-back caches, without coordination between them

print 1

print 100

At later points, a:2 and b:200 are written back to main memory

Memory Consistency

What are the possible values printed?

- Depends on memory consistency model
- Abstract model of how hardware handles concurrent accesses

Memory Consistency

What are the possible values printed?

- Depends on memory consistency model
- Abstract model of how hardware handles concurrent accesses

Sequential consistency

- As if only one operation at a time, in an order consistent with the order of operations within each thread
- Thus, overall effect consistent with each individual thread but otherwise allows an arbitrary interleaving

Sequential Consistency Example

- 100, 1 and 1, 100
- Would require reaching both Ra and Rb before Wa and Wb

Non-Coherent Cache Scenario

Write-back caches, without coordination between them

print 100

Sequentially consistent? No!

Non-Sequentially Consistent Scenario

 Coherent caches, but thread consistency constraints violated due to out-of-order execution

int a = 1;

int b = 100;

Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra

Snoopy Caches

Tag each cache block with state

- Invalid Cannot use value
- Shared Readable copy
- Exclusive Writeable copy

Snoopy Caches

Tag each cache block with state

- InvalidCannot use valueSharedReadable copy
- Exclusive Writeable copy

print 2
print 200
When cache sees request for one of its E-tagged blocks

- Supply value from cache (Note: value in memory may be stale)
- Set tag to S

Memory Models

Sequentially Consistent:

Each thread executes in proper order, any interleaving

To ensure, requires

- Proper cache/memory behavior
- Proper intra-thread ordering constraints

Today

Parallel Computing Hardware

- Multicore
 - Multiple separate processors on single chip
- Hyperthreading
 - Efficient execution of multiple threads on single core

Consistency Models

What happens when multiple threads are reading & writing shared state

Thread-Level Parallelism

- Splitting program into independent tasks
 - Example: Parallel summation
 - Examine some performance artifacts
- Divide-and conquer parallelism
 - Example: Parallel quicksort

Summation Example

Sum numbers 0, ..., N-1

Should add up to (N-1)*N/2

Partition into K ranges

- N/K values each
- Each of the t threads processes 1 range
- Accumulate leftover values serially

Method #1: All threads update single global variable

- 1A: No synchronization
- 1B: Synchronize with pthread semaphore
- IC: Synchronize with pthread mutex
 - "Binary" semaphore. Only values 0 & 1

Accumulating in Single Global Variable: Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;

Accumulating in Single Global Variable: Declarations

```
typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;
/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;
```

Accumulating in Single Global Variable: Declarations

```
typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;
/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;
/* Number of elements summed by each thread */
size t nelems per thread;
/* Keep track of thread IDs */
pthread t tid[MAXTHREADS];
/* Identify each thread */
int myid[MAXTHREADS];
```

Accumulating in Single Global Variable: Operation

Thread Function: No Synchronization

```
void *sum_race(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;
    for (i = start; i < end; i++) {
        global_sum += i;
        }
        return NULL;
}</pre>
```

Unsynchronized Performance

Best speedup = 2.86X

Gets wrong answer when > 1 thread! Why?

Thread Function: Semaphore / Mutex

Semaphore

```
void *sum sem(void *varqp)
{
    int myid = *((int *)vargp);
    size t start = myid * nelems per thread;
    size t end = start + nelems per thread;
    size t i;
    for (i = start; i < end; i++) {
       sem wait(&semaphore);
       global sum += i;
       sem post(&semaphore);
    }
    return NULL;
}
```

Mutex

```
pthread_mutex_lock(&mutex);
global_sum += i;
pthread_mutex_unlock(&mutex);
```

Semaphore / Mutex Performance

poor performance?

Terrible Performance

- Mutex 3X faster than semaphore
- Clearly, neither is successful

Separate Accumulation

Method #2: Each thread accumulates into separate variable

- 2A: Accumulate in contiguous array elements
- 2B: Accumulate in spaced-apart array elements
- 2C: Accumulate in registers

```
/* Partial sum computed by each thread */
data_t psum[MAXTHREADS*MAXSPACING];
/* Spacing between accumulators */
size t spacing = 1;
```

Separate Accumulation: Operation

```
nelems per thread = nelems / nthreads;
/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {</pre>
   myid[i] = i;
   psum[i*spacing] = 0;
   Pthread create(&tid[i], NULL, thread fun, &myid[i]);
for (i = 0; i < nthreads; i++)
   Pthread join(tid[i], NULL);
result = 0;
/* Add up the partial sums computed by each thread */
for (i = 0; i < nthreads; i++)
   result += psum[i*spacing];
/* Add leftover elements */
for (e = nthreads * nelems per thread; e < nelems; e++)</pre>
    result += e;
```

Thread Function: Memory Accumulation

Where is the mutex?

```
void *sum_global(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;
    size_t i;
    size_t index = myid*spacing;
    psum[index] = 0;
    for (i = start; i < end; i++) {
        psum[index] += i;
        }
        return NULL;
</pre>
```

Memory Accumulation Performance

Clear threading advantage

- Adjacent speedup: 5 X
- Spaced-apart speedup: 13.3 X (Only observed speedup > 8)
- Why does spacing the accumulators apart matter?

False Sharing

- Coherency maintained on cache blocks
- To update psum[i], thread i must have exclusive access
 - Threads sharing common cache block will keep fighting each other for access to block

False Sharing Performance

Best spaced-apart performance 2.8 X better than best adjacent

Demonstrates cache block size = 64

- 8-byte values
- No benefit increasing spacing beyond 8

Thread Function: Register Accumulation

```
void *sum_local(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;
    size_t index = myid*spacing;
    data_t sum = 0;
    for (i = start; i < end; i++) {
        sum += i;
    }
    psum[index] = sum;
    return NULL;
}</pre>
```

Register Accumulation Performance

Clear threading advantage

Speedup = 7.5 X

Beware the speedup metric!

2X better than fastest memory accumulation

Lessons learned

Sharing memory can be expensive

- Pay attention to true sharing
- Pay attention to false sharing

Use registers whenever possible

- (Remember cachelab)
- Use local cache whenever possible
- Deal with leftovers
- When examining performance, compare to best possible sequential implementation

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/5835

A More Substantial Example: Sort

- Sort set of N random numbers
- Multiple possible algorithms
 - Use parallel version of quicksort

Sequential quicksort of set of values X

- Choose "pivot" p from X
- Rearrange X into
 - L: Values $\leq p$
 - R: Values $\geq p$
- Recursively sort L to get L'
- Recursively sort R to get R'
- Return L' : p : R'

Sequential Quicksort Visualized

Sequential Quicksort Visualized

L'	р	R'
	•	

Sequential Quicksort Code

```
void qsort serial(data t *base, size t nele) {
  if (nele \leq 1)
    return;
  if (nele == 2) {
    if (base[0] > base[1])
      swap(base, base+1);
    return;
  }
  /* Partition returns index of pivot */
  size t m = partition(base, nele);
  if (m > 1)
   qsort serial(base, m);
  if (nele-1 > m+1)
    qsort serial(base+m+1, nele-m-1);
```

Sort nele elements starting at base

Recursively sort L or R if has more than one element

Parallel Quicksort

Parallel quicksort of set of values X

- If N ≤ Nthresh, do sequential quicksort
- Else
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values $\leq p$
 - R: Values $\geq p$
 - Recursively spawn separate threads
 - Sort L to get L'
 - Sort R to get R'
 - Return L' : p : R'

Parallel Quicksort Visualized

Thread Structure: Sorting Tasks

Task Threads

- Task: Sort subrange of data
 - Specify as:
 - **base**: Starting address
 - nele: Number of elements in subrange
- Run as separate thread

Small Sort Task Operation

Sort subrange using serial quicksort

Large Sort Task Operation

Top-Level Function (Simplified)

```
void tqsort(data_t *base, size_t nele) {
    init_task(nele);
    global_base = base;
    global_end = global_base + nele - 1;
    task_queue_ptr tq = new_task_queue();
    tqsort_helper(base, nele, tq);
    join_tasks(tq);
    free_task_queue(tq);
}
```

- Sets up data structures
- Calls recursive sort routine
- Keeps joining threads until none left
- Frees data structures

Recursive sort routine (Simplified)

- Small partition: Sort serially
- Large partition: Spawn new sort task

Sort task thread (Simplified)

```
/* Thread routine for many-threaded quicksort */
static void *sort_thread(void *vargp) {
    sort_task_t *t = (sort_task_t *) vargp;
    data_t *base = t->base;
    size_t nele = t->nele;
    task_queue_ptr tq = t->tq;
    free(vargp);
    size_t m = partition(base, nele);
    if (m > 1)
        tqsort_helper(base, m, tq);
    if (nele-1 > m+1)
        tqsort_helper(base+m+1, nele-m-1, tq);
    return NULL;
}
```

- Get task parameters
- Perform partitioning step
- Call recursive sort routine on each partition

Parallel Quicksort Performance

Serial fraction: Fraction of input at which do serial sort

- Sort 2³⁷ (134,217,728) random values
- Best speedup = 6.84X

Parallel Quicksort Performance

Good performance over wide range of fraction values

- F too small: Not enough parallelism
- F too large: Thread overhead + run out of thread memory

Amdahl's Law

Overall problem

- T Total sequential time required
- p Fraction of total that can be sped up $(0 \le p \le 1)$
- k Speedup factor

Resulting Performance

- T_k = pT/k + (1-p)T
 - Portion which can be sped up runs k times faster
 - Portion which cannot be sped up stays the same
- Maximum possible speedup
 - k = ∞
 - T_∞ = (1-p)T

Amdahl's Law Example

Overall problem

- T = 10 Total time required
- p = 0.9 Fraction of total which can be sped up
- k = 9 Speedup factor

Resulting Performance

- T₉ = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0
- Maximum possible speedup

Amdahl's Law & Parallel Quicksort

Sequential bottleneck

- Top-level partition: No speedup
- Second level: ≤ 2X speedup
- k^{th} level: $\leq 2^{k-1}X$ speedup

Implications

- Good performance for small-scale parallelism
- Would need to parallelize partitioning step to get large-scale parallelism
 - Parallel Sorting by Regular Sampling
 - H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 1992

Parallelizing Partitioning Step

Reassemble into partitions

Experience with Parallel Partitioning

- Could not obtain speedup
- Speculate: Too much data copying
 - Could not do everything within source array
 - Set up temporary space for reassembling partition

Lessons Learned

Must have parallelization strategy

- Partition into K independent parts
- Divide-and-conquer

Inner loops must be synchronization free

Synchronization operations very expensive

Watch out for hardware artifacts

- Need to understand processor & memory structure
- Sharing and false sharing of global data

Beware of Amdahl's Law

Serial code can become bottleneck

You can do it!

- Achieving modest levels of parallelism is not difficult
- Set up experimental framework and test multiple strategies