Carnegie Mellon

AN

TO i

-k N & .
v e < B A s i

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Concurrent Programming

14-513: Introduction to Computer Systems
23" Lecture, Nov. 13, 2018

Instructor:
Gregory Kesden

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Data Race

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Deadlock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Deadlock

m Example from signal handlers.
m Why don’t we use printf in handlers?

void catch child(int signo) {

Carnegie Mellon

printf ("Child exited!\n") ; // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1, NULL, WNOHANG) > 0) continue; //reap all children

}
Acquire Receive
m Printf code: lourr 4 10K signal 1 40)
= Acquire lock R l acquire
““““““ v lock

" Do something
= Release lock

m What if signal handler interrupts call to printf?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Printf Deadlock

void catch child(int signo) {
printf ("Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
while (waitpid(-1l, NULL, WNOHANG) > 0) continue; //reap all children

}

int main(int argc, char** argv) {

Child #0 started

for (i = 0; 1 < 1000000; i++) { Child #1 started

1f/}f?rk(;_:2 0) ft _ diatel Child #2 started
in child, exit immediately Child #3 started
exit(0) ;

Child exited!
} Child #4 started

// in parent ' '
: . . . Child exited!
sprintf (buf, "Child #%d started\n", 1i); Child #5 started

printf ("%s", buf);
}

return 0;

} Child #5888 started
Child #5889 started

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Starvation

m Yellow must yield to
green

m Continuous stream
of green cars

Overall system
makes progress, but
some individuals
wait indefinitely

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

= Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= Starvation / Fairness: external events and/or system scheduling
decisions can prevent sub-task progress

= Example: people always jump in front of you in line
m Many aspects of concurrent programming are beyond the
scope of our course..
= but, notall ©
= We'll cover some of these aspects in the next few lectures.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Concurrent Programming is Hard!

It may be hard, but ...

it can be useful and sometimes necessary!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Reminder: Iterative Echo Server

Client Server
[3\
socket socket
bind > open_listenfd
open clientfd < l
listen
Connection l /
request
L connect - [~""""TTToooo- P accept <
A 4 A 4
Client / » rio_writen »rio readlineb|s
Server . .
. l l Await connection
Session rio_readlineb < rio_writen request from
next client
\ 4 \ 4
close = }F----- EQE ————— »rio readlineb
\ 4
close

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Iterative Servers

m Iterative servers process one connection at a time

Client 1 Server
connect ... >
accept
write fu. read
................. IS
call ready
ret read B i Write
read
close | _close
---------- '

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Iterative Servers

m Iterative servers process one request at a time

Client 1 Server Client 2
Connect
....... .
accept| e connect
PRNTRRRSREEC L
write mmmmmm"mwmmfiif __________________ write
call read USSR
................................ - call read
ret read|[*” write ~
read
close T ClOSE Wait for server
whaccept > to finish with
Client 1
read
write
................................. -/
] | A 'l ret read

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Where Does Second Client Block?

m Second client attemptsto = Call to connect returns

connect to iterative server = Even though connection not
yet accepted

Client _
p = Server side TCP manager
SR e queues request
" Feature known as “TCP
listen backlog”
open_clientfd| m Call to rio_writen returns
Connection = Server side TCP manager
request buffers input data
connect [~""""TTTooo-- > . .
\ I m Call to rio_readlineb
rio writen > bIOCkS
] = Server hasn’t written
0 T T P anything for it to read yet.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Fundamental Flaw of Iterative Servers

Client 1 Server Client 2
Connect
....... .
accept| e connect
write fu callread, ____________________ write
call read PRNSPIRRRITEELE
[T call read
ret read[*” write
call read .
User goes . oo Cl|e.:th 2 bIocks(.]|
out to lunch erve_r. ocks waiting to rea
waiting for from server
Client 1 blocks data from
waiting for user | Client 1,

to type in data

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15

Carnegie Mellon

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

2. Event-based
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Uses technique called I/0 multiplexing.

3. Thread-based

= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space
= Hybrid of of process-based and event-based.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1 server
call connecCty...e call accept
................... o ret accept
call fgets
child 1_— fork
User goes call read call accept
out to lunch
Child blocks
Client 1 waiting for
blocks data from
waiting for Client 1
user to type
in data

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Approach #1: Process-based Servers

m Spawn separate process for each client

client 1 server client 2
call connecti....e call accept
.................. »| ret accept | cal1 connect
PR
call fgets
CMELE’/// fork
User goes call read call accept
out to lunch ret accept
Child blocks call fgets
Client 1 waiting for £ _ _
ork write
blocks data from wz/
' 11
waiting for Client 1 | ea11 call read
user to type - read
close ret read
v v v i CJ-ose

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Iterative Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l]);
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen)
echo (connfd) ;
Close (connfd) ;

}
exit (0) ;

= Accept a connection request
"Handle echo requests until client terminates

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l]);
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen)

echo (connfd) ; /* Child services client */
Close(connfd); /* child closes connection with client */
exit(0) ;

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l]);
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen)

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close(connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l]);
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen)

if (Fork() == 0) {
echo (connfd) ; /* Child services client */
Close(connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

}

Close (connfd) ; /* Parent closes connected socket (important!) */

echoserverp.c

Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Making a Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

listenfd = Open listenfd(argv[1l]);
while (1) {

}

clientlen = sizeof (struct sockaddr storage) ;

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen)

if (Fork() == 0) {
Close (listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit (0) ; /* Child exits */

Close(connfd); /* Parent closes connected socket (important!) */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

23

Carnegie Mellon

Process-Based Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, connfd;
socklen t clientlen;
struct sockaddr storage clientaddr;

Signal (SIGCHLD, sigchld handler) ;
listenfd = Open listenfd(argv[1l]);
while (1) {
clientlen = sizeof (struct sockaddr storage) ;
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen)

if (Fork() == 0) {
Close(listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */

}

Close (connfd) ; /* Parent closes connected socket (important!) */

echoserverp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Process-Based Concurrent Echo Server

(cont)

void sigchld handler (int sig)

{
while (waitpid(-1, 0, WNOHANG) > 0)
return;

} echoserverp.c

= Reap all zombie children

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Concurrent Server: accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client l T Server waiting for connection
clientfd request on listening
descriptor 1istenfd
Connection listenfd (3)
request . R 2. Client makes connection
Client i T Server request by calling connect
clientfd
listenfd (3)
5 3. Server returns connfd from
Server accept. Forks child to handle
client. Connection is now
Server established between clientfd
Client L) R L child and connfd

clientfd connfd (4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Process-based Server Execution Model

Connection requests
Listening
server
process
Client 1 data | Client1 Client2 | client 2 data
<4 > server server i« >
process process

= Each client handled by independent child process
" No shared state between them

= Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child should close 1istenfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Issues with Process-based Servers

m Listening server process must reap zombie children
= to avoid fatal memory leak
m Parent process must close its copy of connfd

= Kernel keeps reference count for each socket/open file
= After fork, refcnt (connfd) = 2
" Connection will not be closed until refcnt (connfd) = 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Pros and Cons of Process-based Servers

m + Handle multiple connections concurrently

m + Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)

m + Simple and straightforward
m — Additional overhead for process control

m — Nontrivial to share data between processes
" (This example too simple to demonstrate)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Approach #2: Event-based Servers

m Server maintains set of active connections

= Array of connfd’s

m Repeat:
= Determine which descriptors (connfd’s or listenfd) have pending inputs
= e.g., using select function
= arrival of pending input is an event
= |If listenfd has input, then accept connection
= and add new connfd to array
= Service all connfd’s with pending inputs

m Details for select-based server in book

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

/O Multiplexed Event Processing

Read and service

Active Descriptors Pending Inputs
listenfd = 3 listenfd =3 ¢
connfd’s connfd’s
0 10 |) 10
1 7 > Active Anything 7 l—
2 4
) |« happened?
1 -1
> Inactive
4 -1) -1
5 12 12 —
> Active
6 5) 5 |
7 -1) -1
8 1 > -1
9 1) Never Used -1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Pros and Cons of Event-based Servers

m + One logical control flow and address space.
m + Can single-step with a debugger.

m + No process or thread control overhead.

= Design of choice for high-performance Web servers and search engines.
e.g., Node.js, nginx, Tornado

m —Significantly more complex to code than process- or thread-
based designs.

m —Hard to provide fine-grained concurrency
= E.g., how to deal with partial HTTP request headers

m — Cannot take advantage of multi-core
= Single thread of control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/1221

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

https://canvas.cmu.edu/courses/1221

Approach #3: Thread-based Servers

m Very similar to approach #1 (process-based)

= _.butusing threads instead of processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Traditional View of a Process
m Process = process context + code, data, and stack

e - _P rocess EE“_“E"} _______ Code, data, and stack

Program context: 5p —s Stack
Data registers
Condition codes Shared libraries
Stack pointer (SP)
Program counter (PC) brk — Run-time heap

Read/write data
PC — Read-only code/data

VM structures
Descriptor table
brk pointer

|
|
|
|
|
|
|
|
|
|
: Kernel context:
|
|
|
|
|
|
|
|
|
|

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code, data, and kernel context

Shared libraries

Stack .
i brk Run-time heap
Thread context: Read/write data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

1
1
1
1
1
1
1
Data registers : PC — Read'only COdE/data
1
1
1
1
1
1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
® Each thread shares the same code, data, and kernel context
® Each thread has its own stack for local variables
= but not protected from other threads
= Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: Thread 2 context: read/write data
Data registers Data registers read-only code/data
Condition codes Condition codes o
SP, SP,
PC, PC, Kernel context:
VM structures

Descriptor table
brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Logical View of Threads

m Threads associated with process form a pool of peers

= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

e @ - :

OXIOXO,
® @ | ®

bar

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

‘e
‘e
3

|

|

|

|

|

|

: s | shared code, data
I and kernel context
|

|

|

|

|

|

|

*
*
*
.
-
*
-
L3

Carnegie Mellon

Concurrent Threads

m Two threads are concurrent if their flows overlap in
time

m Otherwise, they are sequential

m Examples: Thread A Thread B Thread C
" Concurrent: A& B, A&C | . [__
= Sequential:B&C I
Time | I ------

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Concurrent Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate parallelism by = Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Threads vs. Processes

m How threads and processes are similar
® Each has its own logical control flow
= Each can run concurrently with others (possibly on different cores)
= Each is context switched

m How threads and processes are different
" Threads share all code and data (except local stacks)

= Processes (typically) do not

" Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
" Creating and reaping threads
= pthread create()
= pthread join ()
"= Determining your thread ID
= pthread self ()
" Terminating threads
= pthread cancel ()
= pthread exit()
= exit () [terminates all threads]
= return [terminates current thread]
= Synchronizing access to shared variables
= pthread mutex init

= pthread mutex [un]lock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

The Pthreads "hello, world" Program

/%

* hello.c - Pthreads "hello, world" program

*/ Thread attributes
#include "csapp.h" » Thread ID ; (usually NULL)
void *thread (void *vargp) ; y

int main(int argc, char*¥* gv)

{ . Thread routine
pthread t tid; *________________—

Pthread create(&tid, NULL, thread, NULL);

} hello.c
_ Return value
void *thread(void *vargp) /* thread routine */ (void **p)

{
printf ("Hello, world!'\n");
return NULL;

} hello.c

ryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Execution of Threaded “hello, world”

Main thread

call Pthread create()

Pthread create() | e Peer thread
returns
call Pthread join() | T print£ ()
Main thread waits for] return NULL;

Peer thread

peer thread to terminate | e
......................... terminates

Pthread join() |
returns

exit ()
Terminates
main thread and
any peer threads

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Thread-Based Concurrent Echo Server

int main(int argc, char **argv)

{

int listenfd, *connfdp;

socklen t clientlen;

struct sockaddr storage clientaddr;
pthread t tid;

listenfd = Open listenfd(argv[1l]);
while (1) {
clientlen=sizeof (struct sockaddr storage);
connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, connfdp);

}
return O; echoservert.c

= Spawn new thread for each client
= Pass it copy of connection file descriptor
= Note use of Malloc () ! [but not Free ()]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{
int connfd = *((int *)vargp):
Pthread detach (pthread self())
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

} echoservert.c

" Run thread in “detached” mode.
= Runs independently of other threads
= Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold connfd.
" Close connfd (important!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Thread-based Server Execution Model

Connection requests ‘
Listening
server
. main thread i
Client 1 Client 2
Clientldata | gepyer server | Client 2 data
)] peer peer)]
thread thread

= Each client handled by individual peer thread
" Threads share all process state except TID
" Each thread has a separate stack for local variables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any pointin time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
= must be reaped (with pthread join)to free memory resources
= Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
» use pthread detach (pthread self ()) tomake detached
m Must be careful to avoid unintended sharing

" For example, passing pointer to main thread’s stack
= Pthread create(&tid, NULL, thread, (void *)&connfd);

m All functions called by a thread must be thread-safe
= (next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Potential Form of Unintended Sharing

while (1) {

int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, thread, &connfd);

main thread

connfd = connfd,

Main thread stack

connfd

Peer, stack

"~y
"y
"y
ay
ey
ey
L
"y
e,
e,
L
.......
ey
"y
e,
e,
e,
LIS
"y
"y
gy
"y
gy
.

° vargp

I
"ay,
L
"a,
gy
ay
LIS
"y
........
L
L
"a,
LIS
"y
ay
"y
"

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

L
"y
.......
ey,
L
L]

Peer, stack

O vargp

’\ connfd = *vargp

v Why would both copies of vargp point to same location?

49

Carnegie Mellon

Could this race occur?

Main Thread
int 1i; void *thread(void *vargp)
for (i = 0; i < 100; i++) { {

Pthread create(&tid, NULL, int 1 = *((int *)vargp):

thread, &i); Pthread detach(pthread self());
} save value(i);
return NULL;
}
m Race Test

" |f no race, then each thread would get different value of i
= Set of saved values would consist of one copy each of 0 through 99

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Experimental Results

No Race

0 2 4 6 81012141618202224262830323436384042444648505254565860626466687072747678808284 8688909294 9698

Single core laptop

3

i

1

o L NNRRRE_ RNARRNAR NARNRR NURRNRRRNARNARR RNRRAR AR

0 2 46 81012141618202224262830323436384042444648505254565860626466687072747678808284868890929496098

Multicore server
14

2

1
0

12

10

8

il L ‘ 1111111

0 Trrrrrrrrrrrrirrrrrrirorrr il
0 2 46 810121416182022242628303234363840424446485052545658606264666870727476788082848688909294 9698

m The race can really happen!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

51

Correct passing of thread arguments

/* Main routine */
int *connfdp;
connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(. . .)’
Pthread create (&tid, NULL, thread, connfdp);

/* Thread routine */
void *thread(void *vargp)

{
int connfd = *((int *)vargp):

Free (vargp) ;

return NULL;

m Producer-Consumer Model
= Allocate in main
" Free in thread routine

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads

= e.g., logging information, file cache

m + Threads are more efficient than processes

m — Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

" Hard to know which data shared & which private
" Hard to detect by testing

= Probability of bad race outcome very low
= But nonzero!

" Future lectures

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Summary: Approaches to Concurrency

m Process-based

" Hard to share resources: Easy to avoid unintended sharing
" High overhead in adding/removing clients

m Event-based
" Tedious and low level
" Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrency
= Does not make use of multi-core

m Thread-based

= Easy to share resources: Perhaps too easy
" Medium overhead
" Not much control over scheduling policies

= Difficult to debug
= Event orderings not repeatable

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

