
15213 - Recitation 2 - Datalab

Introduction

In this activity you will review the material on integers, binary, and floating-point necessary for
datalab. This activity was based on material developed by Professor Saturnino Garcia of the
University of San Diego. It is used here with permission.

Each activity is designed to be solved in groups and take approximately 10 minutes.

Activity 1: Bit-level and Logical

1. De Morgan’s Law enables one to distribute negation over AND and OR. Given the following
expression, complete the following table to verify for the 4-bit inputs. ~(x & y) == (~x) | (~y)

x y ~(x & y) (~x) | (~y)
0xF 0x1 0b1110 0xE
0x5 0x7 0b1010 0xA
0x3 0xC 0b1111 0xF

This section will explore logical operations. These operations contrast with bit-level in that they
treat the entire value as a single element. In other languages, the type of these values would be
termed, “bool” or “boolean”. C does not have any such type. Instead, the value of 0 is false and all
other values are true.

The three operators are AND (&&), OR (||), and NOT (!). “!” is commonly termed “bang”.

2. Evaluate the following expression: (0x3 && 0xC) == (0x3 & 0xC) 0x1 =/= 0x0

3. Test whether (!!X) == X holds across different values of X. Do the same for bitwise complement.

X !X !!X ~X ~~X
-1 0 1 0 -1
0 1 0 -1 0
1 0 1 -2 1
2 0 1 -3 2

Activity 2: Shifts, Negation and Conditional

1. Suppose we right shift the value of “-2” by 1. What value do we expect? -2 / 2 = -1

1

2. With 4-bit integers, what is the binary for -2? After right shifting by 1, what value(s) might
we have? 0b1110 >> 1 = 0b1111

3. Fill in the following table, assuming you only have 4 bits to represent the 2s complement
integer.

x x in binary -x in binary
1 0001 1111
2 0010 1110
7 0111 1001
-8 1000 -

4. Find an algorithm for computing the expression (cond) ? t : f, which equals t if cond is
1 and f if cond is 0.

int conditional(int cond, int t, int f) {
/* Compute a mask that equals 0x00000000 or
0xFFFFFFFF depending on the value of cond */

int mask = ________(cond<<31)>>31____________;

/* Use the mask to toggle between returning t or returning f */

return ____(mask "and" t) "or" (~mask "and" f)_____;
}

Activity 3: Floating-point

1. How many representations for zero are there with denormalized floats? Are any of these
representations the same for zero as an integer? 2; 1 (all zeros)

2. Which is larger, 2127 or + inf? Does this ordering hold when these numbers are floats (i.e., if just
the bit patterns are compared)? +inf; yes 0b0|1111 1110|0. . . vs 0b0|1111 1111|0. . .

3. There are several possible rounding schemes for floating point values. There are two components
of rounding. First, is what to do in general? Should the float be rounded up, down, to zero, or
to nearest? The second component is what to do about ties with round to nearest. So should
9/2.0 be 4 or 5? The default IEEE scheme is round to nearest even. Apply it to the following
values for a system that only has three bits for the fractional component of the final value, so
final binary value should be 1.xyz.

Value Binary Rounded Final
1 3/32 1.00011 11 1.001
1 5/32 1.00101 01 1.001
1 7/8 1.111 - 1.111
1 5/8 1.101 - 1.101

2

Activity 4: Divide and Conquer

Let’s count how many bits are set in a number. For each challenge, you can use any allowed operator
allowed in the integer problems in datalab. Using 1 op, return the number of bits set in a 1-bit
number. int bitCount1bit(int x) {return x;}

1. How about if there are two bits in the input? (4 ops max)

int bitCount2bit(int x)
{

int bit1 = __0b01 & x_________;
int bit2 = ____0b01 & (x >> 1)_______;
return ____bit1_______ + ____bit2_______ ;

}

2. How about if there are four bits? (8 ops max)

int bitCount4bit(int x)
{

int mask = ___0b0101________;

int halfSum = ____(mask & x) + (mask & (x >> 1))_______;

int mask2 = ____0b0011_______;

return ___(mask2 & halfSum)________ + ___(mask2 & (halfSum >> 2))________ ;
}

3. How about if there are eight bits? (12 ops max)

int bitCount8bit(int x)
{

int mask = ____0b01010101_______;

int quarterSum = ____(mask & x) + (mask & (x >> 1))_______;

int mask2 = ___0b00110011________;

int halfSum = ___(mask2 & quarterSum) + (mask2 & (quarterSum >> 2))________;

int mask3 = ____0b00001111_______;

return __(mask3 & halfSum)_________ + ____(mask3 & (halfSum >> 4))_______ ;
}

3

	Introduction
	Activity 1: Bit-level and Logical
	Activity 2: Shifts, Negation and Conditional
	Activity 3: Floating-point
	Activity 4: Divide and Conquer

