
Carnegie Mellon

1Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Recitation	8:	Exam	Stack	Review

15-213:	Introduction	to	Computer	Systems
Oct	15,	2018

Instructor:
Your	TA(s)

Carnegie Mellon

2Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Midterm	Exam	This	Week
¢ 3	hours	+	1	hour	for	regrade	requests
¢ 1	double-sided	page	of	notes

§ No	preworked problems	from	prior	exams

¢ 7	questions

¢ Report	to	the	room
§ TA	will	verify	your	notes	and	ID
§ TAs	will	give	you	your	exam	server	password
§ Login	via	Andrew,	then	navigate	to	exam	server	and	use	special	

exam	password

Carnegie Mellon

3Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Stack	Review
¢ In	the	following	questions,	treat	them	like	the	exam

§ Can	you	answer	them	from	memory?
§ Write	down	your	answer
§ Talk	to	your	neighbor,	do	you	agree?

¢ Discuss:
What	is	the	stack	used	for?

Carnegie Mellon

4Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Stack	Manipulation
¢ We	execute:

mov $0x15213, %rax
pushq %rax

¢ For	each	of	the	following	instructions,	determine	if	they	
will	result	in	the	value	0x15213	being	placed	in	%rcx?

1) mov (%rsp), %rcx

2) mov 0x8(%rsp), %rcx

3) mov %rsp, %rcx

4) popq %rcx

Carnegie Mellon

5Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Stack	Manipulation
¢ We	execute:

mov $0x15213, %rax
pushq %rax

¢ For	each	of	the	following	instructions,	determine	if	they	
will	result	in	the	value	0x15213	being	placed	in	%rcx?

1) mov (%rsp), %rcx

2) mov 0x8(%rsp), %rcx

3) mov %rsp, %rcx

4) popq %rcx

Carnegie Mellon

6Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Stack	is	memory
¢ We	execute:

mov $0x15213, %rax
pushq %rax

popq %rax

¢ If	we	now	execute:							mov -0x8(%rsp), %rcx
what	value	is	in	%rcx?

1)	0x0	/	NULL
2)	Seg fault
3)	Unknown
4)	0x15213

Carnegie Mellon

7Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Stack	is	memory
¢ We	execute:

mov $0x15213, %rax
pushq %rax

popq %rax

¢ If	we	now	execute:							mov -0x8(%rsp), %rcx
what	value	is	in	%rcx?

1)	0x0	/	NULL
2)	Seg fault
3)	Unknown
4)	0x15213

Carnegie Mellon

8Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

x86-64	Calling	Convention
¢ What	does	the	calling	convention	govern?

1)	How	large	each	type	is.
2)	How	to	pass	arguments	to	a	function.
3)	The	alignment	of	fields	in	a	struct.
4)	When	registers	can	be	used	by	a	function.
5)	Whether	a	function	can	call	itself.

Carnegie Mellon

9Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

x86-64	Calling	Convention
¢ What	does	the	calling	convention	govern?

1)	How	large	each	type	is.
2)	How	to	pass	arguments	to	a	function.
3)	The	alignment	of	fields	in	a	struct.
4)	When	registers	can	be	used	by	a	function.
5)	Whether	a	function	can	call	itself.

Carnegie Mellon

10Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Register	Usage
¢ The	calling	convention	gives	meaning	to	every	register,

describe	the	following	9	registers:	

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save

Carnegie Mellon

11Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Register	Usage
¢ The	calling	convention	gives	meaning	to	every	register,

describe	the	following	9	registers:	

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save

4

3

2

1

5

6

Carnegie Mellon

12Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Register	Usage
¢ Which	line	is	the	first	violation	of	the	calling	convention?

mov $0x15213,	%rax
push	%rax
mov 0x10(%rsp),	%rcx
mov %rbx,	%rax
pop	%rdx
push	%rax
pop	%rbx
mov %rcx,	%rbx

Carnegie Mellon

13Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Register	Usage
¢ Which	line	is	the	first	violation	of	the	calling	convention?

mov $0x15213,	%rax
push	%rax
mov 0x10(%rsp),	%rcx
mov %rbx,	%rax
pop	%rdx
push	%rax
pop	%rbx
mov %rcx,	%rbx Until	this	point,	the	callee has

preserved	the	callee-save	value.

Carnegie Mellon

14Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Sometimes	arguments	are	implicit
How	many	arguments	does	“rsr”	take?		
How	many	registers	are	changed	before	the	function	call?

(Note,	%sil is	the	low	8	bits	of	%rsi)
0x0400596 <+0>: cmp %sil,(%rdi,%rdx,1)
0x040059a <+4>: je 0x4005ae <rsr+24>
0x040059c <+6>: sub $0x8,%rsp
0x04005a0 <+10>: sub $0x1,%rdx
0x04005a4 <+14>: callq 0x400596 <rsr>
0x04005a9 <+19>: add $0x8,%rsp
0x04005ad <+23>: retq
0x04005ae <+24>: mov %edx,%eax
0x04005b0 <+26>: retq

Carnegie Mellon

15Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Arguments	can	already	be	“correct”
¢ rsr does	not	modify	s	and	t,	so	the	arguments	in	those	

registers	are	always	correct
int rsr(char* s, char t, size_t pos)
{
if (s[pos] == t) return pos;
return rsr(s, t, pos - 1);

}

Carnegie Mellon

16Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Recursive	calls
¢ Describe	the	stack	after	doThis(4)	returns.

void doThis(int count)
{

char buf[8];
strncpy(buf, “Hi 15213”, sizeof(buf));
if (count > 0) doThis(count – 1);

}

push %rbx
sub $0x10, %rsp
mov %edi,%ebx
movabs $0x3331323531206948,%rax
mov %rax,(%rsp)
...

