drpeagle lvie

SECOND EDITION

THE

C Boot Camp

September 30, 2018 PROGRAMMING
LANGUAGE.

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

ICE HALL SOFTWARE SERIES

arnegie vielion

Agenda

=« C Basics
. MAN, | SUCK AT THIS GAME.,
« Debugging Tools / Demo CAN YOU GIVE ME.
: A FEW POINTERS?
= Appendix | [0x3A28213A
C Standard Library 8:;335';33;22%
getopt | HATE You
stdio.h
stdlib.h M
string.h

C Basics Handout

ssh <andrewid>@shark.ics.cs.cmu.edu

cd ~/private

wget http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz
tar xvpf cbootcamp.tar.gz

cd cbootcamp

make

« Contains useful, self-contained C examples
« Slides relating to these examples will have the file

names in the top-right corner!

http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz
http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz

C Basics

= The minimum you must know to do well in this class
= You have seen these concepts before
- Make sure you remember them.

= Summary:
- Pointers/Arrays/Structs/Casting
- Memory Management
- Function pointers/Generic Types
= Strings
- GrabBag (Macros, typedefs, header guards/files, etc)

Pointers

m Stores address of a value in memory
m €.0g. int*, char*, 1nt**, etc
m Access the value by dereferencing (e.g. *a).
Can be used to read or write a value to given address
m Dereferencing NULL causes undefined behavior
(usually a segfault)
m Pointer to type A references a block of sizeof (A) bytes
m Get the address of a value in memory with the ‘¢’
operator
m Pointers can be aliased, or pointed to same address

arnegie vielion

Call by Value vs Call by Reference ./passing args

« Call-by-value: Changes made to arguments passed to a function
aren’t reflected in the calling function

« Call-by-reference: Changes made to arguments passed to a
function are reflected in the calling function

« Cisacall-by-value language

= [0 cause changes to values outside the function, use pointers
- Do not assign the pointer to a different value (that won’t be reflected!)
- Instead, dereference the pointer and assign a value to that address

void swap(int* a, int* b) { int x = 42;
int temp = *a; int y = 54;
*a = *b; swap (&x, &y);
*b = temp; printf (“%d¥n”, x); // 54

} printf (“%d¥n”, vy); // 42

Pointer Arithmetic

./pointer arith

Can add/subtract from an address to get a new address

= Only perform when absolutely necessary (i.e., malloclab)

- Result depends on the pointer type

« A+i,where Ais apointer = 0x100, 1 ISan int

int* A A+1 =
char* A: A+1 =
int** A: A+1 =

O0x100 + sizeof (int) * 1 = 0x100 +
0x100 + sizeof(char) * 1 = 0x100 +
0x100 + sizeof (int*) * i = 0x100 +

4 * 1
1 * 1
8 * 1

Rule of thumb: explicitly cast pointer to avoid confusion

Prefer ((char*) (A)

+ i) to(an + i), evenif A hastype char*

vie

Structs ./structs

= Collection of values placed under one name in a single

block of memory
- Can put structs, arrays in other structs

« Given a struct instance, access the fields using the ‘.’

operator
= Given a struct pointer, access the fields using the ">’
operator
struct inner s { struct outer s /{ outer s out inst;
int 1i; char ar[10]; out inst.ar[0] = ‘a’;
char c; struct inner s in; out inst.in.i = 42;
Y Y outer s* out ptr = &out inst;

out ptr->in.c = ‘b’;

Unions

« When to use typedef union {
. char a;
= Saving memory int b
« Malloclab! } myUnion;
] myUnion *u = malloc(sizeof (myUnion))
- Tagged Unions printf (”“size: %zu¥n”, sizeof (myUnion));
u->a = ‘A'’;

printf (“u->b: %d”, u->b); // UNDEFINED

Arrays/Strings

« Arrays: fixed-size collection of elements of the same type

- Can allocate on the stack or on the heap
int A[10]; // A is array of 10 int’s on the stack
int* A = calloc (10, sizeof(int)); // A is array of 10
int’s on the heap

= Strings: Null-character ("¥0’) terminated character arrays
= Null-character tells us where the string ends
- All standard C library functions on strings assume null-termination.

a “.

Casting

« Can convert a variable to a different type

« Integer Casting:
- Signed <-> Unsigned: Keep Bits - Re-Interpret
- Small -> Large: Sign-Extend MSB
« Cautions:
= Cast Explicitly: int x = (int) y instead of int x =y
. Casting Down: Truncates data
. Cast Up: Upcasting and dereferencing a pointer causes undefined
memory access

m Rules for Casting Between Integer Types

Malloc, Free, Calloc

« Handle dynamic memory allocation on HEAP
» vold* malloc (size t size):
= allocate block of memory of size bytes
= does not initialize memory
» vold* calloc (size t num, size t size):
= allocate block of memory for array of num elements, each size bytes long
= Initializes memory to zero
= voild free(void* ptr):
= frees memory block, previously allocated by malloc, calloc, realloc, pointed
by ptr
= Uuse exactly once for each pointer you allocate
= Size argument:
= should be computed using the sizeof operator

= Sizeof: takes a type and gives you its size
= €.0.,,sizeof (int), sizeof (int*)

a “.

mem mgmt.c
./mem valgrind.sh

= malloc whatyou free, free what youmalloc
- client should free memory allocated by client code
- library should free memory allocated by library code
= Number mallocs = Number frees
= Number mallocs > Number Frees: definitely a memory leak
- Number mallocs < Number Frees: definitely a double free
Free a malloc’ed block exactly once
= Should not dereference a freed memory block
Only malloc when necessary

= Persistent, variable sized data structures
= Concurrent accesses (we'll get there later in the semester)

Memory Management Rules

Stack vs Heap vs Data

« Local variables and function arguments are placed on the

stack

. deallocated after the variable leaves scope

- do not return a pointer to a stack-allocated variable!

- do not reference the address of a variable outside its scope!

=« Memory blocks allocated by calls to malloc/calloc are
placed on the heap
« Globals, constants are placed in data section

« Example:
= /[ais a pointer on the stack to a memory block on the heap
- Int* a = malloc(sizeof(int));

arnegie vielion

Typedefs . /typedefs

« Creates an alias type name for a different type
« Useful to simplify names of complex data types
« Be careful when typedef-ing away pointers!

struct list node {
int x;

Y

typedef int pixel;
typedef struct list node* node;
typedef int (*cmp) (int el, int e2); // you won’t use this in 213

pixel x; // int type
node foo; // struct list node* type
cmp int cmp; // int (*cmp) (int el, int e2) type

arnegie vielion

Macros ./macros

= A way to replace a name with its macro definition

- No function call overhead, type neutral
- Think “find and replace” like in a text editor

« Uses:
. defining constants (INT_MAX, ARRAY_SIZE)
- defining simple operations (MAX(a, b))
. 122-style contracts (REQUIRES, ENSURES)

« Warnings:
- Use parentheses around arguments/expressions, to avoid problems after
substitution

= Do not pass expressions with side effects as arguments to macros

#define INT MAX Ox7FFFFFFFF

#define MAX (A, B) ((A) > (B) ? (A) : (B))
#define REQUIRES (COND) assert (COND)

#define WORD SIZE 4

#define NEXT_WORD(a) ((char~*) (a) + WORD_SIZE)

Generic Types

« Vvoid* type is C’s provision for generic types
= Raw pointer to some memory location (unknown type)
= Can’t dereference a void* (what is type void?)
= Must cast void* to another type in order to dereference it

« Can cast back and forth between void* and other pointer

types

// stack implementation:
typedef void* elem;
stack stack new();

void push(stack S, elem e);
elem pop(stack S);

// stack usage:

int x = 42; int y = 54;

stack S = stack new():
push (S, &x);
push (S, &y);
int a = *(int*)pop(S);

4
4

int b = *(int*)pop(S);

Header Files

Includes C declarations and macro definitions to be shared

across multiple files
= Only include function prototypes/macros; implementation code goes in .c file!

« Usage: #include <header.h>
#include <1ib> for standard libraries (eg #include <string.h>)
= f#include “file” for your source files (eg #include “header.h”)

= Never include .c files (bad practice)

// stacks.h

// list.h // list.c
struct list node ({ #include “list.h” #include “list.h”
int data; struct stack head {
struct list node* next; node new list() { node top;
// implementation node bottom;

}s

typedef struct list node* node; } i

typedef struct stack head* stack
node new list(); void add node (int e, node 1) {

void add node (int e, node 1); // implementation stack new stack();
} void push(int e, stack S);

Header Guards

= Double-inclusion problem: include same header file twice

//grandfather.h //father.h //child.h
#include “grandfather.h” #include “father.h”
#include “grandfather.h”

Error: child.h includes grandfather.h twice

= Solution: header guard ensures single inclusion

//grandfather.h //father.h //child.h

#ifndef GRANDFATHER H #ifndef FATHER H #include “father.h”
#define GRANDFATHER H #define FATHER H #include “grandfather.h”
#endif fendif

Okay: child.h only includes grandfather.h once

Debugging

GDB, Valgrind

GDB

#include

= No longer stepping through assembly!

Some GDB commands are different:
= Si/si— step/ next
- Dbreak file.c:line_num
. disas — list SiE e S moThe
= print <any_var_name> (in current frame) “

return 0;

« Use TUI mode (layout src)
= Nice display for viewing source/executing R

on 3 or later <

Line: 6 PC: 0x8048395

you are free to change a

commands A S e
- Buggy, so only use TUI mode to step ST s i

through lines (no continue / finish) e A

Valgrind

Eile Edit Yiew TJerminal Taps Help

= Find memory errors, detect memory leaks |imiemece /s vgrina sentens

we 167 30== Homchack, a memory error detector
Common errors‘ ==lG738== Copyright (C) 2002-2018, and GNU GFL°d, by Jullian Seward et al.

. wu]§73B== Using Valgrind-3.6.1 and L1BVEX; rerun with -h Tor copyright info
==l§730== Command: ./memleak

- lllegal read/write errors 16738

wm]§730== Invalid write of size 4

. Use of uninitialized values 16738 3t 0x480589: main (mem_leak.c:32)

wnlf7IB== Address Oxd4c26O68 15 @ bytes after a block of size 49 alloc'd

- ”|egal freeS ==l673B== at BxdABGAEF: malloc (vg_replace malloc.c:236)

==1673B== by Bx408505: maln (mem leak.c:17)

- Overlapping source/destination addresses ~-16738-~

w=]6738== Invalid read of size 4

Typical solutions e e et e S AEIIT e o stz 8 ntecrg

H ? su]lf7IBa= at BxdABEAEF: malloc (vg_replace malloc.c:236)
u Dld yOU a”ocate enough memory e LR by B8x408505: main (mem leak.c:17)
e LT

- Did you accidentally free stack 16738

==]lf738== | HEAP SUMMARY :

VarlableS/Somethlng tWIC8'7 ==16738mn in use at exit: 418 bytes in 8 blocks

e LTEL total heap wsage: 11 allocs, 3 frees, 599 bytes allocated

- Did you initialize all your variables?

== l6730==| LEAK SUMMARY:

D|d use Someth|ng that you JUSt free d’? —=16738==] definitely lost: 418 bytes in 8 blocks

==16738== indirectly lost: @ bytes in @ blocks

enl67IBmw HGS'SIDI:" lost: @ D}'TES in B blocks
| "Ieak ChECk fUII =157 3Hmm still reachable: 8 bytes in B blocks
aalfTIBa= suppressed: @ bytes in @ blocks

- Memcheck gives details for each 1673 CRETTT T o= T T e T T ey

e L LR

definitely/possibly lost memory block (where it ~-16738= For counts of detected and suppressed errors, rerun with: -v

wulf7IB== ERROR SUMMARY: 36 errors from 2 contexts (suppressed: 4 from 4)

was allocated [pwellszgnewcell ~/junkls]

Appendix

—qllll!‘ !"!‘ l'll!‘ "OII.

C Program Memory Layout

high address } command-line arguments

and environment variables

imtialized to

uninitialized data }

(bss) zero by exec
initialized data
read from
program file
text by exec

low address

Variable Declarations & Qualifiers

« Global Variables:
- Defined outside functions, seen by all files
= Use “extern” keyword to use a global variable defined in another file

« Const Variables:

- For variables that won’t change

- Data stored in read-only data section
« Static Variables:

- For locals, keeps value between invocations
- USE SPARINGLY
= Note: static has a different meaning when referring to functions

« Volatile Variables:
= Compiler will not make assumptions about current value, useful for

asynchronous reads/writes, i.e. interrupts
= ‘volatile” == “subject to change at any time”

C Libraries

arnegie vielion

string.h: Common String/Array Methods

= One the most useful libraries available to c

you . . THS 5 GREAT, BUT YOU FORGOT T°0 ADD
= Used heavily in shell/proxy labs ASRLLTSRMNAION 1OW I o Bukones
« Important usage details regarding)V

arguments:
= prefixes: str -> strings, mem -> arbitrary
memory blocks.
= ensure that all strings are ‘¥0’ terminated!
= ensure that dest is large enough to store src!
= ensure that src actually contains n bytes!
= ensure that src/dest don’t overlap!

string.h: Common String/Array Methods

« Copying:
= void *memcpy (void *dest, void *src, size t n)
Copy n bytes of src into dest, return dest

« char *strcpy(char *dest, char *src)

Copy src string into dest, including the NUL terminator, return dest.

Make sure dest is large enough to contain src.

« char *strncpy(char *dest, char *src, size t count)

Copy src string into dest, including the NUL terminator, return dest.

Copies at most count bytes.
Make sure dest is large enough to contain src.

a “.

string.h: Common String/Array Methods (Continued)

=« Concatenation:
= char *strncat (char *dest, char *src, size t n)
Append copy of src to end of dest reading at most n bytes, return dest

« char *strcat (char *dest, char *src)
Works for arbitrary length strings, but has the safety issues you’ve seen in
attacklab

string.h: Common String/Array Methods (Continued)

= Comparison:

int strncmp (char *strl, char *str2, size t n)
Compare at most n bytes of strl, str2 by character

(based on ASCII value of each character, then string length),
return comparison result

-1 if strl < str2
0 If strl == str2
1 If strl > str2

int strcmp(char *strl, char *str2)
Compare strl to str2.
Make sure each string is long enough to be safely compared.

a “.

string.h: Common String/Array Methods (Continued)

« Searching:
« char *strstr (char *strl, char *str2)
Return pointer to first occurrence of str2 in strl, else NULL
« char *strtok (char *str, char *delimiters)
Tokenize str according to delimiter characters provided in
delimiters.
Return the one token for each strtok call, using str = NULL

string.h: Common String/Array Methods (Continued)

« Other:

= size t strlen (const char *str)
Return length of the string (up to, but not including the “¥0’ character)

= vold *memset (voild *ptr, int val, size t n)
Set first n bytes of memory block addressed by ptr to val.
Use for setting bytes only. Don’t use it to set or initialize int arrays,

for example.

stdlib.h: General Purpose Functions

« Dynamic memory allocation:
« malloc, calloc, free

= String conversion:
. 1int atoi (char *str): parse string into integral value (return O if not parsed)

« System Calls:
. void exit (int status):terminate calling process, return status to parent process
= void abort (): aborts process abnormally

= Searching/Sorting:
= provide array, array size, element size, comparator (function pointer)
= bsearch: returns pointer to matching element in the array
= gsort: sortsthe array destructively

=« Integer arithmetic:
« 1int abs (int n):returns absolute value of n

= TYpes:

» size t:unsigned integral type (store size of any object)
= In aformat string, print with $zu

stdio.h

Another really useful
library.

Used heavily in
cache/shell/proxy labs

Used for:

= argument parsing

- file handling

= Input/output

printf, a fan favorite, comes
from this library!

Text terminal

[Keyboard

[Display

#0 stdin

#1 stdout

arnegie vielion

stdio.h: Common I/O Methods

« FILE *fopen (char *filename, char *mode):open the file with
specified filename in specified mode (read, write, append, etc), associate
it with stream identified by returned file pointer

« int fscanf (FILE *stream, char *format, ...):readdata
from the stream, store it according to the parameter format at the
memory locations pointed at by additional arguments.

= int fclose (FILE *stream) : close the file associated with stream

= 1int fprintf (FILE *stream, char *format, ...): writethe
C string pointed at by format to the stream, using any additional
arguments to fill in format specifiers.

Getopt

Need to include unistd.hto use .

Used to parse command-line
arguments.
Typically called in a loop to
retrieve arguments
Switch statement used to handle
options

= colon indicates required argument

= optarg is set to value of option
argument

Returns -1 when no more
arguments present

See recitation 6 slides for more
examples

1

{

nt main (int argc,

char **argv)

int opt, x;
/* looping over arguments */
while ((opt=getopt (argc,argv, “'x:"))>0) {
switch (opt) {
case 'x':
X = atoi (optargqg);
break;
default:
printf (“wrong argument¥n");
break;

Note about Library Functions

= These functions can return error codes

= malloc could fail

« 1nt x;

1f ((x = malloc(sizeof(int))) == NULL)
printf ("Malloc failed!!!¥n”);

- a file couldn’t be opened

= a string may be incorrectly parsed
« Remember to check for the error cases and handle the

errors accordingly
= Mmay have to terminate the program (eg malloc fails)
= Mmay be able to recover (user entered bad input)

