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Density Estimation Background

* Input space X

+ True distribution (X ) on X

 Dataset of training points D = {Xl, s ,Xn} (i.i.d. from p(X)
» Goal: Using D , calculate q(X) over /Y so itis close to p(X)

Example Algorithms:
» Generative Adversarial Networks (GANSs)
« Variational Autoencoders (VAES)
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Motivation: Inductive bias in DEs is not understood

. D is exponentially small compared to X , SO assumptions are required
» These assumptions (inductive bias) is implicit and not understood well

» Authors propose to systematically analyze this bias

» Original input and output spaces are too large (focus on images)

 Authors look at simplified feature space inspired by psychology
(size, shape, color, numerosity)
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Method: Choose specific dataset ...

Authors use different:

* Algorithms
(VAE, GAN)

 Datasets / . .
(e.g., pie charts)

* Distributions over features for p(X)
(e.q., distribution of color portion) \
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Method: ... and identify feature space behavior of g(x)

Authors look at distribution over features for (X) over X
* Directly look at one-dimensional distribution (when one feature)
» Compare support of p(X) and q(X)

* Visualize 2D distribution for single combination
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Results: DEs generalize locally

« If single mode, distribution centered around mode but with variance
« If multiple separate modes, then distribution is average over these

* If modes are near each other, create peak at mean (“prototype enhancement”)

» Across multiple features, behavior is independent

predicted by convolution actual learned distribution

training distribution
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Results: Support of q(x) increases faster than p(x)

As more combinations are added to training data:
* These combinations are still consistently generated
* Number of unique, novel combinations increases

Authors conclude: Generally hard to memorize >100 combinations
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Results: DEs memorize when there are few modes

* |f few combinations, then will memorize combinations

* If many combinations, then generalizes outside of p(X) support

19%)

Co, tOf (O/' Co C fo,. o, (7
0 tO /7@ Us: (/S ,7@ 0/7@ 0 Q/S spjf)« /’/7 '70’;,/’ G’r 9/' C oe'e o"@ SO/%,"’ ”,’%l:' ’)y/@r R SC G/-e o,,
7 7

*Coy, l‘o “Co, “Co,, S, e, €. re O,
Vi S Spe Sy Sy e s 046 J»/, 7
Us Us e e “Copd "”e,’"oé{’e"”e COne e T, ’017@ e,»”o'é’,”e,{’er 00;'0@%

e e
e e
red.red---. red.red 18 greenred-17 8 7 16 5118 10 12
' green.green-16 18 X1 16 EE] FE] 1Y 18

30 buegreen HINEEEEN
25 blue.blue .... ...
: N BjulululE
green.green..-. ...
blue.blue-... 15 rec oo A HEERE red.red -2 [ P51 E0 EE) XD ) 12
10 red.green ........ red.green- 6 16 15 13 9 14 3113
red.blue-.-. red.blue -

green.red.
5 biuve.ced | Il I I I
A: Training Distribution (4x4) B: Generated Combinations (4x4) C: Training Distribution (9x9) D: Generated Combinations (9x9)

n 0 green.blue ....-...

red.bive 17 15 16 15 8 15 15 13
blue.green -gE 14 Bl B2 18 EX EE B
blue.blue -5 11 1 £ 3] 16 18 13

blue.blue

bluered-1316 3 13 14 12 13 12
FEl12 111813 12

W s W = 00 0.y
N
(=]

green.blue '1_8 19



Some authors are from Stanford Dept. of Psych.

 Authors 3 and 5 (Yuan and Goodman) are from Department of Psychology
 Other four are from the Computer Science Department

 Authors find similarities to the prototype enhancement effect in psychology
(the intermediate point between two close modes is strongly expressed)

 Authors find memorization when few modes and generalization when many



Structure: Critique
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13

14

Are appropriate baseline methods considered?
Are appropriate evaluation metrics used? 16
Is experiment design reasonable?

Is uncertainty of data-driven approach
accounted for?

17
Are the results reproducible?
Are conclusions corroborated by results? 5

Are stated goals achieved?
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Critique: Do not explain psychology terms

* Prototype Abstraction: Learning a canonical representation for a category
(membership of new items based on similarity to prototype)

» Exemplar Memorization: Learning a set of examples for a category
(membership of new items based on similarity to all these examples)



Critique: Overlooked a related work

Related work in cognitive science:
“Development of Prototype Abstraction and Exemplar Memorization” (2010)

DPAEM authors:
 Consider P. Abs. and Ex. Mem. in autoencoders
» Quantify effect of P. Abs. and Ex. Mem. (following previous work)
* Find P. Abs. effect early in training and Ex. Mem. effect later in training
* Find P. Abs. effect diminished when categories are less well structured

« Compare results with psychological studies and find close match
(test psychological hypotheses in their system)
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Critique: Psychology comparison was haphazard

DGM paper authors:
» Do not explain prototype abstraction or prototype enhancement

» Do not quantify PA effect
(quantify generalization and memorization in a non-standard way)

* Do not look at behavior over course of training
(only report for end of training without specifying termination condition)

* Do not consider effect of category structure
(only consider case where modes are chosen at random)

* Do not test hypotheses about PA relationship

* Do not compare to existing work in neural network PA



Critique: Try few hyperparameter settings

 Authors claim conclusions hold for different hyperparameters

» Appendix explains that authors only test one set per method (four total)



Critique: Broad generalization in memorization conclusion

Authors:

* Only consider random selection of modes

» Show generalization (increased support)
» Use as evidence that controlling memorization is very difficult
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Critique: Disregard factors aside from mode count

» Aim to find “when and how existing models generate novel attributes”

» Conclude behavior is a function of number of modes
(< 20 modes memorized and > 80 modes lead to generalization)
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Critique: Disregard factors aside from mode count

» Aim to find “when and how existing models generate novel attributes”

» Conclude behavior is a function of number of modes
(< 20 modes memorized and > 80 modes lead to generalization)

* Acknowledge dataset must grow very quickly as support increases, but only use
a factor of four between minimum and maximum
(fewer samples in 4x4 case may lead to same generalization behavior)

* Train for indeterminate amount of time which may not depend on dataset
(less training in 4x4 case may lead to same generalization behavior)
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Critique: Leave unanswered questions

* In introduction, mention finding number of colors in training data before new
combinations are generated, but do not do this analysis

» Do not address asymmetry in some figures (ex: Figure 10)
(Why are the mode densities so different?)
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Critique: Leave unanswered questions

* In introduction, mention finding number of colors in training data before new
combinations are generated, but do not do this analysis

» Do not address asymmetry in some figures (ex: Figure 10)
(Why are the mode densities so different?)

 Claim results are the same for VAE, but the plots show smoother trend
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Critique: Psychology comparison was haphazard

DGM paper authors:
» Do not explain prototype abstraction or prototype enhancement

» Do not quantify PA effect

* Do not look at behavior over course of training
(only report for end of training without specifying termination condition)

» Do not consider effect of category structure
(only consider case where modes are chosen at random)

* Do not test hypotheses about PA relationship

* Do not compare to existing work in neural network PA
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Experimental Evaluation:
Bias and Generalization
in Deep Generative Models
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