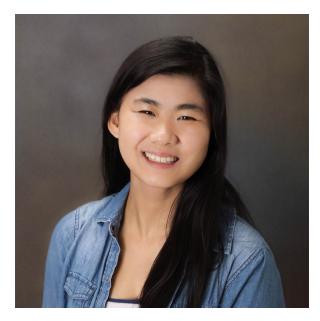
Taxi Travel Time Prediction

Assignment 3 - Outcome Lecture

Sebastian Caldas and Nicholay Topin

This lecture has 2 objectives:

Summarize the students' solutions to the assignment


Understand how the assignments have related to the **course's goals**

This lecture has 2 objectives:

Summarize the students' solutions

to the assignment

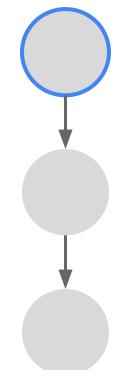
Understand how the assignments have related to the **course's goals**

Helen Zhou

Jacob Tyo

Global summary

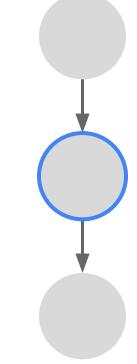
"By 5pm on April 15, 2019, make a submission to Kaggle that beats the baseline."


- We did some feature engineering
 - For a given pick up-drop off pair, we calculated the first, second and third quartiles for the travel time.
 - We added these as 3 new features to our samples
- Our model was a 2-layer neural network (with ReLU non-linearities)
 - We first made sure the network could overfit the training data
 - We increased the size of the layers to 2048 neurons
 - We then added some regularization in the form of dropout
 - \circ $\:$ We trained on 5% of the data using Adam $\:$

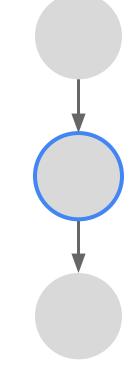
Any comments?

"Provide a clear, detailed description of your overall pipeline sufficient to reproduce your exact pipeline."

- 1. Preprocessing
 - Mostly done for you (Thanks again, Nicholay!)
 - Convert time t to ln(t + 1) to easily optimize RMSLE
 - Subsample the data (to account for limited resources)



- 1. Preprocessing
 - Mostly done for you (Thanks, Nicholay!)
 - Convert time t to ln(t + 1) to easily optimize RMSLE
 - Subsample the data (to account for limited resources)
- 2. Feature engineering
 - Remove "vendor id", "payment type" and "passenger count" (?)
 - Month (?), day of week, hour of day (categorical)
 - Distance between locations
 - Average time for pick-up/drop-off pair
 - Traffic estimates (count for pick-up/drop-off pair, sometimes hour)
 - Additional external data (described later)
 - Embeddings of the pick-up/drop-off locations



Figures by Biswajit Paria

- 3. Split into train/val sets
 - Test set was given
 - Best estimates if train happened before val

- 3. Split into train/val sets
 - Test set was given
 - Best estimates if train happened before val
- 4. Method Selection
 - Dictionaries
 - Random forests (most popular)
 - Boosted trees
 - Nearest neighbors (not very flexible)
 - Shallow feed-forward neural network (quite unpopular?)
 - Classifier per pick-up/drop-off pair (sometimes band of day)
 - Requires handling sparsity

- 5. Tuning
 - Tune on a developer set (different from train/val)
 - Cross-validation, grid-search, random-search
 - People learned not to pick an extreme value of the grid search :D
- 6. Evaluation
 - Convert back from log-space
 - Evaluate on val set (before submitting to Kaggle)

- 5. Tuning
 - Tune on a developer set (different from train/val)
 - Cross-validation, grid-search, random-search
 - People learned not to pick an extreme value of the grid search :D
- 6. Evaluation
 - Convert back from log-space
 - Evaluate on val set (before submitting to Kaggle)
- 7. Iterate
 - \circ $\;$ First method did not work for many

Any comments?

"Describe the process you used to select your pipeline and improve it."

• Ablation studies

	Train RMSLE	Val RMSLE
2D matrix	0.3178	0.3303
3D matrix	0.38	0.42

Table 2: Effect of using (PU, DO, hour) mean time instead of (PU, DO)

	Train RMSLE	Val RMSLE
Regular loc emb	0.3214	0.3303
Time-aware loc emb	0.3294	0.3411

Table 6: T-SNE-based time-aware location embeddings

	Train RMSLE	Val RMSLE
Without Symmetrization	0.3214	0.3398
With Symmetrization	0.3178	0.3303

Table 1: Effect of symmetrization on the mean travel time matrix

Tables by Srinivas Ravishankar

"Describe the process you used to select your pipeline and improve it."

• Hyperparameter tuning

Any comments?

"Describe the additional data you used."

- Most popular types of external data:
 - Weather (different granularities)
 - <u>https://www.timeanddate.com/</u>
 - https://www.kaggle.com/selfishgene/historical-hourly-weather_data#weather_de scription.csv
 - <u>https://darksky.net/dev</u>
 - <u>https://w2.weather.gov/climate/index.php?wfo=okx</u>
 - Holidays
 - Wikipedia
 - Real-time traffic speed data
 - https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/qkm <u>5-nuaq</u>

"Describe the additional data you used."

- Most popular types of external data:
 - Weather (different granularities)
 - <u>https://www.timeanddate.com/</u>
 - https://www.kaggle.com/selfishgene/historical-hourly-weather_data#weather_de scription.csv
 - <u>https://darksky.net/dev</u>
 - <u>https://w2.weather.gov/climate/index.php?wfo=okx</u>
 - Holidays
 - Wikipedia
 - Real-time traffic speed data
 - <u>https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/qkm</u> <u>5-nuaq</u>
- Most pipelines could easily handle the additional features

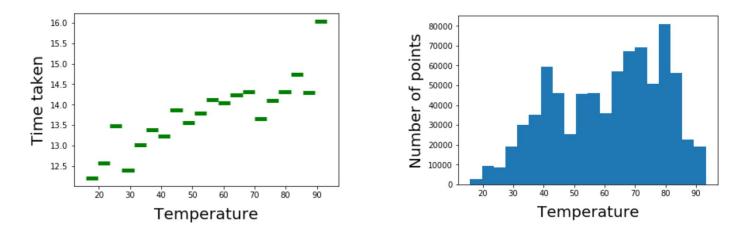


Figure 2: Average travel time for different temperatures, as well as the histogram of temperatures.

Figure by Ritesh Noothigattu

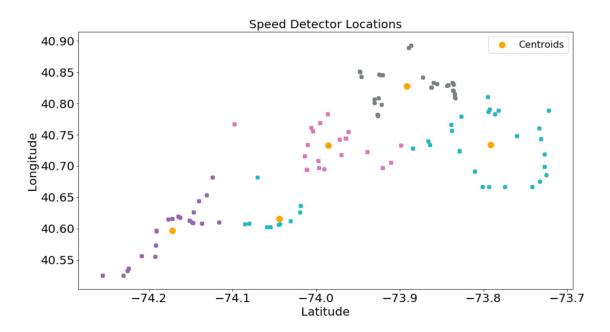


Figure 1: Distribution of speed detectors throughout New York City and their associated centroids.

Figure by Zachary Wojtowicz

"Perform a basic ablation analysis."

• Students had mixed results when adding external data

	No Pipeline Improv	Pipeline Improv
No External Data	0.33481	0.33323
External Data	0.33180	0.33012

Table : Ablation Analysis

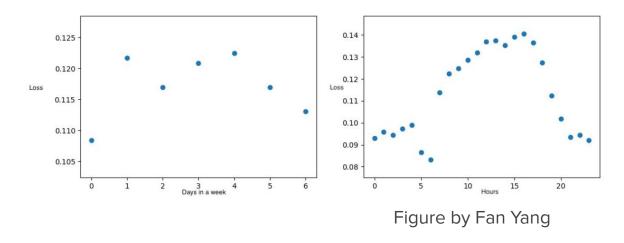
Table by Aditya Galada

	Random forest	XGBoost	Tuned XGBoost	Tuned XGBoost (weather)
Train	0.1311	0.3284	0.3146	0.3187
Val	0.3476	0.3301	0.3267	0.3253

Table 3: RMSLE (train and val) of untuned random forest, untuned XGBoost, tuned XGBoost and tuned XGBoost with weather features

Table by Jie Xie

Any comments?



"Justify your choice of overall pipeline."

- Most students did quite well in this regard
- The strongest arguments were usually:
 - Improved performance
 - Better computational cost

"Propose concrete and meaningful modifications or extensions to your solution."

- Better models
- More data (e.g., from previous years)
- Error analysis

"Propose concrete and meaningful modifications or extensions to your solution."

- Better models
- More data (from previous years, for example)
- Error analysis
- More feature engineering

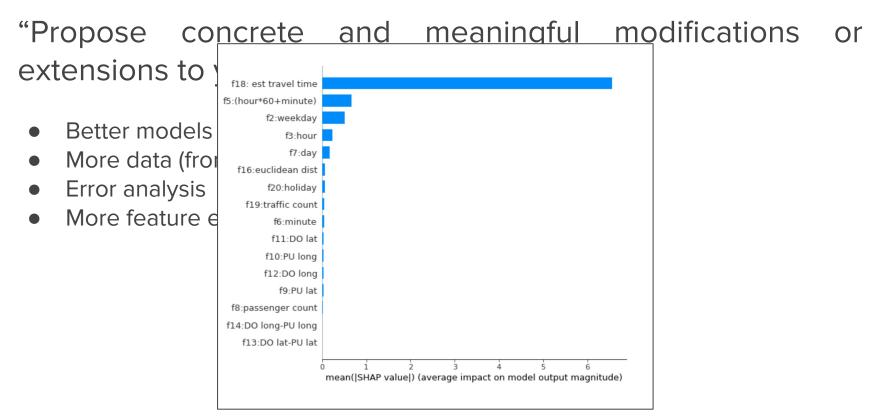
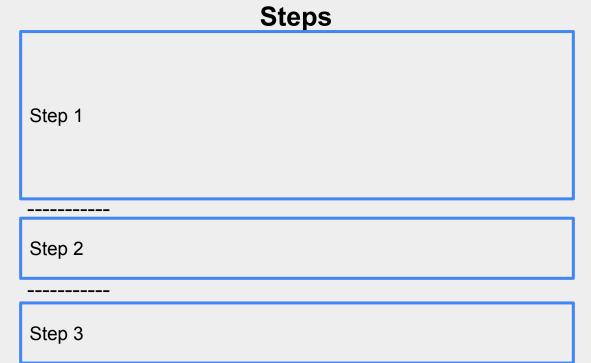


Figure by Jing Mao


Any comments?

This lecture has 2 objectives:

Summarize the students' solutions to the assignment

Understand how the assignments have related to the **course's goals**

Steps

Overview of research Some research questions the data might answer Description of data Data checks / transfer Return to questions and translating them Present to collaborators

Step 2	
Step 3	

Steps

Overview of research Some research questions the data might answer Description of data Data checks / transfer Return to questions and translating them Present to collaborators

Simple methods to give preliminary answers Present to collaborators

Step 3

Steps

Overview of research Some research questions the data might answer Description of data Data checks / transfer Return to questions and translating them Present to collaborators

Simple methods to give preliminary answers Present to collaborators

Do better / Iterate Present to collaborators

Any comments?

We are done!

