Taxi Travel Time Prediction

Assignment 2 - Outcome Lecture

Sebastian Caldas and Nicholay Topin

Before we start: a survey!

• Who has done applied machine learning before?

Before we start: a survey!

- Who has done applied machine learning before?
- How much time did you spend on the implementation part of the assignment?

This lecture has 3 objectives:

Summarize the students' solutions to the assignment

Understand how the assignment relates to the **course's goals** Provide the appropriate **context for the next assignment**

This lecture has 3 objectives:

Summarize the students' solutions to the assignment

Understand how the assignment relates to the **course's goals** Provide the appropriate **context for the next assignment**

Ksenia Korovina

Zachary Wojtowicz

Global summary

"By 5pm on March 13, 2019, make a submission to Kaggle that beats the baseline."

- Baseline was a simple "lookup table" approach
 - Calculate "hour block" for each data point: int (pickup_hour/5)
 - Features: hour block, PU location ID, DO location ID
 - At test-time, for a *(block, PU ID, DO ID)* tuple, predict average for matching training tuples

"By 5pm on March 13, 2019, make a submission to Kaggle that beats the baseline."

- Baseline was a simple "lookup table" approach
 - Calculate "hour block" for each data point: int (pickup_hour/5)
 - Features: hour block, PU location ID, DO location ID
 - At test-time, for a *(block, PU ID, DO ID)* tuple, predict average for matching training tuples
- Boosting and random forests with standard parameters outperform baseline

Any comments?

- 1. Preprocessing
 - Mostly done for you (Thanks, Nicholay!)
 - Convert time t to ln(t + 1) to easily optimize RMSLE
 - Subsample the data (to account for limited resources)

- 1. Preprocessing
 - Mostly done for you (Thanks, Nicholay!)
 - Convert time t to ln(t + 1) to easily optimize RMSLE
 - Subsample the data (to account for limited resources)
- 2. Feature engineering
 - Remove "vendor id", "payment type" and "passenger count" (?)
 - \circ Day of week and hour of day (categorical)
 - Month (?)
 - Minute/Hour of the week
 - Weekday vs. weekend
 - Distance between locations
 - Average time for pick-up/drop-off pair
 - Traffic estimates (count for pick-up/drop-off pair, sometimes hour)

How can we handle categorical features?

Why did the average time work?

- 3. Split into train/val sets
 - \circ Test set was given
 - Best estimates if train happened before val

- 3. Split into train/val sets
 - Test set was given
 - Best estimates if train happened before val
- 4. Method Selection
 - Random forests (most popular)
 - Boosted trees
 - Nearest neighbors
 - Shallow feed-forward neural network (quite unpopular?)
 - Classifier per pick-up/drop-off pair (sometimes band of day)
 - Requires handling sparsity

- 3. Split into train/val sets
 - Test set was given
 - Best estimates if train happened before val
- 4. Method Selection
 - Random forests (most popular)
 - Boosted trees
 - Nearest neighbors
 - Shallow feed-forward neural network (quite unpopular?)
 - Classifier per pick-up/drop-off pair (sometimes band of day)
 - Requires handling sparsity
 - Few students had their own baselines.

5. Tuning

- Tune on a developer set (different from train/val)
- Cross-validation (?)
- Different hyperparameters per pick-up/drop-off pair (MTL)
- \circ Pick an extreme value of the grid search (?)
- 6. Evaluate
 - $\circ \quad \text{Convert back from log-space}$
 - Evaluate on val set (before submitting to Kaggle)

5. Tuning

- Tune on a developer set (different from train/val)
- Cross-validation (?)
- Different hyperparameters per pick-up/drop-off pair (MTL)
- Pick an extreme value of the grid search (?)
- 6. Evaluate
 - Convert back from log-space
 - Evaluate on val set (before submitting to Kaggle)
- 7. Iterate

Any comments?

• The first step is to understand / diagnose your current approach

• The first step is to understand / diagnose your current approach

Figure 3: Random Forests Feature Importances

Figures by Jie Xie

• The first step is to understand / diagnose your current approach

Figure 3: Log prediction errors as a function of predicted travel time. The lack of intercept and slope indiciates the lack of systematic bias in prediction errors.

Figure by Zachary Wojtowicz

• The first step is to understand / diagnose your current approach

Figure 3: Performance for each travel time slot

Figures by Aditya Galada

• The first step is to understand / diagnose your current approach

Figure 6: Box plot distribution comparisons for predicted and true trip times

Figure by Neel Guha

Now, how can we do better?

- Better features
 - Make sure to include spatio-temporal features
 - Distance and average travel seem powerful but could be redundant

• Better features

- Make sure to include spatio-temporal features
- Distance and average travel seem powerful but could be redundant

Better models

• Properly tuning your current models

• Better features

- Make sure to include spatio-temporal features
- Distance and average travel seem powerful but could be redundant

Better models

• Properly tuning your current models

• More data

- Subsample more data
- Random forests seems to plateau after a while
- External data sources
 - Weather data
 - Traffic data
 - Holidays

Any comments?

This lecture has 3 objectives:

Summarize the students' solutions to the assignment

Understand how the assignment relates to the **course's goals** Provide the appropriate **context for the next assignment**

Steps

Overview of research Some research questions the data might answer Description of data Data checks / transfer Return to questions and translating them Present to collaborators

Simple methods to give preliminary answers Present to collaborators

Do better / Iterate Present to collaborators

Steps

Overview of research Some research questions the data might answer Description of data Data checks / transfer Return to questions and translating them Present to collaborators

Simple methods to give preliminary answers Present to collaborators

Do better / Iterate Present to collaborators

Steps

Overview of research Some research questions the data might answer Description of data Data checks / transfer Return to questions and translating them Present to collaborators

Simple methods to give preliminary answers Present to collaborators

Do better / Iterate Present to collaborators

This lecture has 3 objectives:

Summarize the students' solutions to the assignment

Understand how the assignment relates to the **course's goals** Provide the appropriate **context for the next assignment**

Steps

Overview of research Some research questions the data might answer Description of data Data checks / transfer Return to questions and translating them Present to collaborators

Simple methods to give preliminary answers Present to collaborators

Do better / Iterate Present to collaborators

Assignment 3 will focus on iterating upon your preliminary pipeline

- We will provide you with a **new preprocessed version of the data**.
- We will not impose any restrictions on which pipeline you decide to implement and **you can use external sources of data**.
- We will provide a set of baselines which you should beat

Just like Assignment 2, Assignment 3 will have two deadlines:

- By the first deadline, you should have a Kaggle submission that beats our proposed baselines
 - Failing to do so will impact your grade
- By the second deadline, you should improve your model and write your report
 - This second deadline is the one previously specified in the course's calendar
- The first deadline will be one week before the second

Just like Assignment 2, Assignment 3 will have two deadlines:

- By the first deadline, you should have a Kaggle submission that beats our proposed baselines
 - Failing to do so will impact your grade
- By the second deadline, you should improve your model and write your report
 - This second deadline is the one previously specified in the course's calendar
- The first deadline will be one week before the second
- The Kaggle competition is meant to incentivize you
 - Your grade will not be negatively affected based on your ranking
 - The only exception is failing to beat the given baselines

Any questions?

