Taxi Travel Time Prediction

Assignment 1 - Outcome Lecture

Sebastian Caldas and Nicholay Topin

This lecture has 3 objectives:

This lecture has 3 objectives:

Ifigeneia Apostolopoulou

Ian Char

Global summary

"Familiarize yourself with the data; identify potential difficulties and required cleaning/pre-processing"

- $\quad 67$ million samples
- 7 features
- Vendor ID $\{1,2\}$
- Tpep_pickup_datetime (date-time format)
- Tpep_dropoff_datetime (date-time format)
- Passenger count [1,9]
- PULocationID $[1,265]$
- DOLocationID[1,265]
- Payment_type [1,5]

"Familiarize yourself with the data; identify potential difficulties and required cleaning/pre-processing"

- Locations:
- Most trips start in Manhattan (61m), Queens (4m), Unknown (1m), and Brooklyn (1m)
- Most trips end in Manhattan (59m), Queens (3m), Brooklyn (3m), and Unknown (1m)
- 20 most common locations are in Manhattan (all except LaGuardia and JFK Airport)

"Familiarize yourself with the data; identify potential difficulties and required cleaning/pre-processing"

- Data is given only for certain months (Jan-July) of 2017
- Any data from another year or month should be removed
- Outliers:
- Trips with time less than 0 (some students suggested trips under X minutes were outliers)
- Trips with time more than 60 or 120 or 720 minutes (no trip across NYC is more than 6 h)
- Trips before 2017 / Trips outside of expected month range
- Trips with 0 passengers (maybe trips with >7 passengers)
"Familiarize yourself with the data; identify potential difficulties and required cleaning/pre-processing"
- Students found that trip time correlated with features such as day of the week, pick up hour and (to a lesser extent) passenger count.

"Familiarize yourself with the data; identify potential difficulties and required cleaning/pre-processing"

- 99.95\% of trips are between a pair of zones which has at least 5 occurrences.

Any other interesting findings?

"Formulate a machine learning problem that will help the domain expert achieve their goal"

- Regression problem
- MSE
- Root Mean Squared Log Error
- Avoids large travel times having too large an impact
- Penalizes underestimates more than overestimates
- MSE weighted with an underestimate loss
- MAE, MAPE
- Huber loss
- Discretized accuracy (e.g., \% within some 'd' of actual time)
- To avoid over-penalizing some samples, we can cap the loss.

"Formulate a machine learning problem that will help the domain expert achieve their goal"

- Dealing with the dataset's size:
- Subsample plus ensembling
- Divide into distinct tasks (e.g., split 6am-10am predictions into own task, task per pick up location)
- Use methods with low overhead (data + method fit in memory)
- Use online methods (e.g., gradient descent)
- External factors:
- Add external information about weather and holidays
- Train/Val/Test splits:
- Strangely, people suggested random splits
- Some suggested withholding last part only (correct!)

Any comments?

"Propose a detailed analytical pipeline to solve the machine learning problem"

1. Preprocessing

- Remove outliers
- Extract travel time from "datetime" columns

2. Feature engineering

- Distance between locations
- Split "datetime" columns into day of week and hour of day.
- Treat "vendor ID" and "payment type" columns as categorical
- Treat "passenger count" as continuous
- Remove "payment type" and "vendor ID"

"Propose a detailed analytical pipeline to solve the machine learning problem"

3. Split into train/val/test sets

- Normalize within each set

4. Potential methods:

- Linear regression / polynomial regression
- LASSO
- Random forests
- Gradient boosting
- Nearest neighbor matching
- Shallow feed-forward neural network
- ARIMA
- Bayesian regression (assume log-normal distribution)

"Propose a detailed analytical pipeline to solve the machine learning problem"

5. Evaluate
6. Diagnose

- For which locations does your pipeline work well?
- Use different stratifications

7. Iterate!

Any comments?

"Design an experiment to evaluate the effectiveness of your approach"

- Baselines:
- Most previous methods need finer location information
- The baselines should be run on the same data
- A common suggested approach was to use the average trip duration for each pair of pick up and drop off destinations
■ Use a global average for pairs with too little data
- Ultimately, a practitioner will have a real business need that needs to be addressed and should evaluate how the overall solution addresses these needs

Any comments?

This lecture has 3 objectives:

Typical Steps of Applied Data Analysis

Steps
Overview of research
Some research questions the data might answer
Description of data
Data checks / transfer
Return to questions and translating them
Present to collaborators
Simple methods to give preliminary answers
Present to collaborators
Do better / Iterate
Present to collaborators

Typical Steps of Applied Data Analysis

Steps

Overview of research
Some research questions the data might answer
Description of data
Data checks / transfer
Return to questions and translating them
Present to collaborators

Simple methods to give preliminary answers
Present to collaborators
Do better / Iterate
Present to collaborators

This lecture has 3 objectives:

Typical Steps of Applied Data Analysis

Steps

Overview of research
Some research questions the data might answer Description of data
Data checks / transfer
Return to questions and translating them
Present to collaborators
Simple methods to give preliminary answers
Present to collaborators
Do better / Iterate
Present to collaborators

Assignment 2 will focus on the implementation of a preliminary pipeline

- We will provide you with a preprocessed version of the data
- We will not impose any restrictions on which pipeline you decide to implement but you can only use the given data
- Any engineered features must come from this data
- You should not use any external data (e.g., from other years)

Assignment 2 will focus on the implementation of a preliminary pipeline

- We will provide you with a preprocessed version of the data
- We will not impose any restrictions on which pipeline you decide to implement but you can only use the given data
- Any engineered features must come from this data
- You should not use any external data (e.g., from other years)
- We will provide a baseline which you should beat

kaggle

Assignment 2 will have two deadlines

- By the first deadline, you should have a Kaggle submission that beats our proposed baseline
- Failing to do so will impact your grade
- By the second deadline, you should improve your model and write your report
- This second deadline is the one previously specified in the course's calendar
- The first deadline will be one week before the second

Assignment 2 will have two deadlines

- By the first deadline, you should have a Kaggle submission that beats our proposed baseline
- Failing to do so will impact your grade
- By the second deadline, you should improve your model and write your report
- This second deadline is the one previously specified in the course's calendar
- The first deadline will be one week before the second
- The Kaggle competition is meant to incentivize you
- Your grade will not be negatively affected based on your ranking
- The only exception is failing to beat the given baseline

We want you guys to do great on Assignment 2!

- We will provide you with sample submissions from last semester
- Different problem
- Different assignment
- Still, they give a rough idea of what we are expecting

We want you guys to do great on Assignment 2!

- We will provide you with sample submissions from last semester
- Different problem
- Different assignment
- Still, they give a rough idea of what we are expecting
- For the students that didn't do so well on Assignment 1:
- Look at the sample submissions and come to office hours

We want you guys to do great on Assignment 2!

- We will provide you with sample submissions from last semester
- Different problem
- Different assignment
- Still, they give a rough idea of what we are expecting
- For the students that didn't do so well on Assignment 1:
- Look at the sample submissions and come to office hours
- For the students that did well:
- Keep up the good work!

Any questions?

