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A Markov Decision Process is a tuple

•     is a finite set of states

•     is a finite set of actions

•     is a state transition probability function  

•    is a reward function  

•    is a discount factor

Markov Decision Process (MDP)!



Outline!

Previous lecture:

•  Policy evaluation

This lecture:

•  Policy iteration

•  Value iteration 

•  Asynchronous DP



Policy Evaluation!

Policy evaluation: for a given policy   , compute the state value 
function  
 
 
where          is implicitly given by the Bellman equation

a system of      simultaneous equations.



Iterative Policy Evaluation!

(Synchronous) Iterative Policy Evaluation for given policy 

•  Initialize V(s) to anything

•  Do until change in maxs[V[k+1](s) – Vk(s)] is below desired threshold 

•  for every state s, update:



•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal states: two, shown in shaded squares

•  Actions that would take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

Policy    , choose an equiprobable random action

Iterative Policy Evaluation!
           for the
random policy



Is Iterative Policy Evaluation 

Guaranteed to Converge?



An operator      on a normed vector space      is a    -contraction,  
for                  , provided for all 

 

Contraction Mapping Theorem!

Definition: 



An operator      on a normed vector space      is a    -contraction,  
for                  , provided for all 

 
Theorem (Contraction mapping) 
For a   -contraction     in a complete normed vector space 

•  Iterative application of      converges to a unique fixed point in  
independent of the starting point

•  at a linear convergence rate determined by  

Contraction Mapping Theorem!

Definition: 



Value Function Sapce!

•  Consider the vector space      over value functions

•  There are        dimensions

•  Each point in this space fully specifies a value function 

•  Bellman backup is a contraction operator that brings value 
functions closer in this space (we will prove this)

•  And therefore the backup must converge to a unique solution



Value Function    -Norm !

•  We will measure distance between state-value functions     and     
by the      -norm 

•  i.e. the largest difference between state values:

||\text{u}-\text{v}||_\infty = \max_{s \in \mathcal{S}}{|\text{u}(s)-\text{v}(s)|}



\begin{equation}
\begin{split}
||F^\pi(\text{u})-F^\pi(\text{v})||_\infty &=||(r^\pi+\gamma T^\pi \text{u})||_\infty -  ||(r^\pi+\gamma T^\pi \text{v})||_\infty\\ 
&=||\gamma T^\pi (\text{u}-\text{v})||_\infty \\
& \leq ||\gamma T^\pi ||\text{u}-\text{v}||_\infty ||_\infty \\
& \leq \gamma ||\text{u}-\text{v}||_\infty 
\end{split}

\end{equation}

Bellman Expectation Backup is a Contraction!

•  Define the Bellman expectation backup operator

•  This operator is a   -contraction, i.e. it makes value functions closer 
by at least    , 



Matrix Form!

The Bellman expectation equation can be written concisely using the 
induced matrix form:

with direct solution

of complexity 

here T π  is an |S|x|S| matrix, whose (j,k) entry gives P(sk | sj, a=π(sj))
         r π  is an |S|-dim vector whose jth entry gives E[r | sj, a=π(sj) ]
         vπ  is an |S|-dim vector whose jth entry gives Vπ(sj)

where |S| is the number of distinct states



Convergence of Iterative Policy Evaluation!

•  The Bellman expectation operator         has a unique fixed point

•        is a fixed point of         (by Bellman expectation equation)

•  By contraction mapping theorem:  Iterative policy evaluation 
converges on 



Given that we know how to evaluate a policy,

how can we discover the optimal policy?



Policy Iteration!

 policy evaluation policy improvement
“greedification”



Policy Improvement!

•  Suppose we have computed        for a deterministic policy 

•  For a given state   , would it be better to do an action                  ?

•  It is better to switch to action     for state     if and only if 

•  And we can compute                  from       by:  

q_\pi(s, a) & = \mathbb{E}[R_{t+1} + \gamma \text{v}_\pi(S_{t+1})|S_t=s,A_t=a] \\
& = r(s,a) + \gamma \sum_{s'\in \mathcal{S}} T(s'|s,a) \text{v}_\pi(s')



Policy Improvement Cont.!

•  Do this for all states to get a new policy                 that is greedy 
with respect to      : 

•  What if the policy is unchanged by this? 

•  Then the policy must be optimal. 

\pi'(s) & =  \arg\max_{a} q_\pi(s, a) \\
& = \arg\max_{a} \mathbb{E}[R_{t+1} + \gamma \text{v}_\pi(s')|S_t=s,A_t=a] \\
& = \arg\max r(s,a) + \gamma \sum_{s'\in \mathcal{S}} T(s'|s,a) \text{v}_\pi(s') 



Policy Iteration!



•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal state: one, shown in shaded square

•  Actions that take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

6

Iterative Policy Eval for the Small Gridworld!

∞

R

γ = 1

Policy    , an equiprobable random action



•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal state: two, shown in shaded squares

•  Actions that take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

Iterative Policy Eval for the Small Gridworld!

∞

R

γ = 1

Initial policy    :  equiprobable random action



Generalized Policy Iteration!

Generalized Policy Iteration (GPI): any interleaving of policy 
evaluation and policy improvement, independent of their granularity.

A geometric metaphor for
convergence of GPI: 



•  Does policy evaluation need to converge to      ?

•  Or should we introduce a stopping condition

•  e.g.     -convergence of value function

•  Or simply stop after k iterations of iterative policy evaluation?

•  For example, in the small grid world k = 3 was sufficient to achieve 
optimal policy

•  Why not update policy every iteration? i.e. stop after k = 1

•  This is equivalent to value iteration (next section)

Generalized Policy Iteration!





Principle of Optimality!

•  Any optimal policy can be subdivided into two components:

•  An optimal first action 

•  Followed by an optimal policy from successor state 

•  Theorem (Principle of Optimality)

•  A policy             achieves the optimal value from state   , 
dfsfdsfdf dsfdf  , if and only if

•  For any state      reachable from   ,      achieves the optimal 
value from state   , 



Example: Shortest Path!
Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Example: Shortest Path
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r(s,a)= -1  except for actions entering terminal state



Bellman Optimality Backup is a Contraction!

•  Define the Bellman optimality backup operator    ,

•  This operator is a     -contraction, i.e. it makes value functions 
closer by at least      (similar to previous proof)



Value Iteration Converges to V*!

•  The Bellman optimality operator        has a unique fixed point

•        is a fixed point of        (by Bellman optimality equation)

•  By contraction mapping theorem, value iteration converges on 



•  Algorithms are based on state-value function              or 
•  Complexity                   per iteration, for       actions and       states
•  Could also apply to action-value function                  or 

Synchronous Dynamic Programming Algorithms!

Problem ! Bellman Equation! Algorithm!

Prediction! Bellman Expectation Equation! Iterative Policy 
Evaluation!

Control! Bellman Expectation Equation + 
Greedy Policy Improvement! Policy Iteration!

Control! Bellman Optimality Equation ! Value Iteration!

“Synchronous” here means we 
•  sweep through every state s in S for each update
•  don’t update V or π until the full sweep in completed



Asynchronous DP!

•  Synchronous DP methods described so far require  
-   exhaustive sweeps of the entire state set. 
-   updates to V or Q only after a full sweep

•  Asynchronous DP does not use sweeps. Instead it works like this:

•  Repeat until convergence criterion is met:

•  Pick a state at random and apply the appropriate backup

•  Still need lots of computation, but does not get locked into hopelessly 
long sweeps

•  Guaranteed to converge if all states continue to be selected

•  Can you select states to backup intelligently? YES: an agent’s 
experience can act as a guide.



Asynchronous Dynamic Programming!

•  Three simple ideas for asynchronous dynamic programming:

•  In-place dynamic programming

•  Prioritized sweeping

•  Real-time dynamic programming



•  Multi-copy synchronous value iteration stores two copies of value function

•  for all     in 

•  In-place value iteration only stores one copy of value function

•  for all     in

In-Place Dynamic Programming!

\text{v}_{new}(s) \leftarrow \max_{a \in \mathcal{A}} {\left( r(s,a) + \gamma \sum_{s'\in \mathcal{S}} T(s'|s,a) {\text{v}_{old}(s')} \right)}



Prioritized Sweeping!

•  Use magnitude of Bellman error to guide state selection, e.g.

•  Backup the state with the largest remaining Bellman error

•  Requires knowledge of reverse dynamics (predecessor states)

•  Can be implemented efficiently by maintaining a priority queue

\left\lvert \max_{a \in \mathcal{A}} {\left( r(s,a) + \gamma \sum_{s'\in \mathcal{S}} T(s'|s,a) textcolo\r{red}{\text{v}(s')} \right)} - \text{v}(s) \right\rvert



Real-time Dynamic Programming!

•  Idea: update only states that the agent experiences in real world

•  After each time-step

•  Backup the state



Sample Backups!

•  In subsequent lectures we will consider sample backups

•  Using sample rewards and sample transitions

•  Advantages:

•  Model-free: no advance knowledge of T or r(s,a) required

•  Breaks the curse of dimensionality through sampling

•  Cost of backup is constant, independent of 



Approximate Dynamic Programming!

•  Approximate the value function

•  Using function approximation (e.g., neural net)

•  Apply dynamic programming to

•  e.g. Fitted Value Iteration repeats at each iteration k,

•  Sample states 

•  For each state            , estimate target value using Bellman 
optimality equation,

•  Train next value function                       using targets


