10703 Deep Reinforcement Learning

Solving known MDPs

Tom Mitchell
September 10, 2018

Many slides borrowed from
Katerina Fragkiadaki
Russ Salakhutdinov

Markov Decision Process (MDP)

A Markov Decision Process is a tuple (S, A, T,r,7)
* S is a finite set of states
* A is a finite set of actions

* T is a state transition probability function
T(s'|s,a) =P[S;11 = §'|S; = s, Ay = a
* 7 is a reward function
r(s,a) = E[R:iy1|S: = s, Ar = a
* 7 is a discount factor v € [0, 1]

Outline

Previous lecture:

* Policy evaluation

This lecture:
* Policy iteration
* Value iteration

* Asynchronous DP

Policy Evaluation

Policy evaluation: for a given policy 7 compute the state value
function

Va(8) =Er [Rey1 + YRey2 + v Riys + ... |St = s

where v, (s) is implicitly given by the Bellman equation

vr(s) = Z m(als) (r(s,a) +y Z T(s'|s, a)vﬂ(s'))

ac A s'eS

a system of |S| simultaneous equations.

lterative Policy Evaluation

(Synchronous) Iterative Policy Evaluation for given policy 7T

Initialize V(s) to anything
Do until change in max [V, (s) — V(s)] is below desired threshold
- for every state s, update:

Vik1)(8) = Z m(als) ('r(s, a)+ 7y Z T(s'|s, a)v[k](sf))

acA s’eS

lterative Policy Evaluation

V[k] for the
random policy

0.0 0.0/ 0.0] 0.0
0.0]1 0.0] 0.0 0.0
0.0{ 0.0{ 0.0] 0.0
0.0] 0.0/ 0.0{ 0.0

Policy 7T, choose an equiprobable random action

0.0[-1.0]-1.0]-1.0

-1.0]-1.0{-1.0{-1.0
-1.0]-1.0[-1.0{ 0.0

1 2 3 0.0/-1.7(-2.0]-2.0
4 5 6 - k=2 -1.7(-2.01-2.01-2.0
-2.0(-2.01-2.0]-1.7
8 9 10 11 -2.01-2.0(-1.7] 0.0
actions 12 13 14 TS
k=3 2.41-2.91-3.0(-2.9
* An undiscounted episodic task 29]-3.0[-2.9-2.4
-3.01-2.9(-2.4] 0.0
* Nonterminal states: 1, 2, ..., 14

0.0[-6.1]-8.4]-9.0
k=10 -6.1(-7.7|-8.4|-8.4
-8.4|-8.4|-7.7[-6.1
-9.0/-8.4/-6.1{ 0.0

* Terminal states: two, shown in shaded squares

* Actions that would take the agent off the grid leave the state unchanged

* Reward is -1 until the terminal state is reached

0.0]-14.]-20.[-22.
-14.[-18.]-20.]-20.
-20.[-20.|-18.]-14.
-22.1-20.{-14.1 0.0

Is Iterative Policy Evaluation

Guaranteed to Converge?

Contraction Mapping Theorem

Definition:

An operator F' on a normed vector space X is a Y-contraction,
for 0 < v < 1, provided for all z,y € X

[F(x) — F(y)|| <~llz =yl

Contraction Mapping Theorem

Definition:

An operator F' on a normed vector space X is a 7Y -contraction,
for 0 < v < 1, provided for all z,y € X

[F(x) — F(y)|| <~llz =yl

Theorem (Contraction mapping)
For a”y-contraction F'in a complete normed vector space X

lterative application of F'converges to a unique fixed point in X’
independent of the starting point

at a linear convergence rate determined by “y

Value Function Sapce

 Consider the vector space V' over value functions

* There are |S| dimensions
* Each point in this space fully specifies a value function v(s)

* Bellman backup is a contraction operator that brings value
functions closer in this space (we will prove this)

* And therefore the backup must converge to a unique solution

Value Function oco-Norm

* We will measure distance between state-value functions U and v
by the 0o-norm

* i.e. the largest difference between state values:

[0 = V]loo = max |u(s) — v(s)

Bellman Expectation Backup is a Contraction

* Define the Bellman expectation backup operator

FT"(v)=r"+~+T"v

* This operator is a Y-contraction, i.e. it makes value functions closer
by at least 7,

£ () = F7 (V)|

(r" +~T™u) — (r" +4T"™V)||
YT (1 = V)|

YT (1 - f[u = v]|oo)lfoc

Y(T71) - [lu = vifoo)l |

Y= v||s

IA N IA

Note we define 1 = [1,1,...,1]7
Note T™1 =1

Matrix Form

The Bellman expectation equation can be written concisely using the
induced matrix form:

Ve =71" +4T" v,
with direct solution

Ve = (I —~T™) 1r™

of complexity O(|S|?) T

here 7' is an ISIxISI matrix, whose (j,k) entry gives P(s, | s;, a=Ti(s))
r ™ is an ISI-dim vector whose j" entry gives E[r | S, a=rt(sj)]
v, is an ISl-dim vector whose | entry gives V.(s)

where S| is the number of distinct states

Convergence of lterative Policy Evaluation

* The Bellman expectation operator F'™ has a unique fixed point
* V. is afixed point of '™ (by Bellman expectation equation)

* By contraction mapping theorem: lterative policy evaluation
converges on V.

Given that we know how to evaluate a policy,

how can we discover the optimal policy?

Policy lteration

E I E I E I E
TQ —> Vg —2> N1 —> Vg, —2> T2 —2 .. —2 Tx —7 Vx

N

policy evaluation policy improvement
“greedification”

Policy Improvement

* Suppose we have computed Vi for a deterministic policy T

» For a given state s, would it be better to do an action a # 7(s)?

* Itis better to switch to action a for state s if and only if
g (8,a) > vr(s)
* And we can compute ¢, (s,a) from v by:
(-8, a) = IE;T[R; + YR + ";"21?”3 +
= E, [Rr 1+ Yr(Sts1)

—l S, a +;ZT

s'eS

= S, A/ :(I.»]
'y = s, Ay = al

(s')

Policy Improvement Cont.

* Do this for all states to get a new policy ' > T thatis greedy
with respect to V.:

m'(s) = arg maxgr(s, a)
a

= argmaxE[R;11 + v (s)|S; = s, A; = a

= arg maxr(s,a) + 7y Z T(s'|s,a)v(s")
s'ES

* What if the policy is unchanged by this?

- Then the policy must be optimal.

Policy lteration

1. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A+0
For each s € &:
v+ V(s)
V(s) ¢ Eacar(als) (r(s,a) + 7EsesT(s']s,a)V(s"))
A +— max(A, v — V(s)])
until A < 6 (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € §:
a + 7(s)
7(8) « argmaxr(s,a) + Xy esT(s'|s,a)v,(s")
If a # w(s), then policy-stable < false
If policy-stable, then stop and return V' and ; else go to 2

lterative Policy Eval for the Small Gridworld

Vi for the Greedy Policy
Random Policy wrt Vi

0.0] 0.0] 0.0] 0.0 1

0.0] 0.0] 0.0] 0.0 1
0.0/ 0.0] 0.0] 0.0
0.0/ 0.0) 0.0/ 0.0 1

—>
ran.dom
P policy

7
1
i N R

N
N
N
N

]
]
]
]

VI

Policy 7T, an equiprobable random action

0.0[-1.0]-1.0]-1.0
-1.0{-1.0[-1.0]-1.0
-1.0{-1.0[-1.0]-1.0

R= -1 0.0[-1.7]-2.0[-2.0
on all transitions k=2 -1.7]-2.0[-2.0|-2.0

-2.0]-2.0{-1.7) 0.0

actions

12 13 |14 v=1

0.0[-2.4]-2.9]-3.0
-2.4(-2.9]-3.0|-2.9
-2.9(-3.0(-2.9]-2.4
-3.0(-2.9(-2.4] 0.0

* An undiscounted episodic task

* Nonterminal states: 1, 2, ..., 14

0.0[-6.1]-8.4]-9.0

* Terminal state: one, shown in shaded square k=10 -6.1]-7.7|-8.4]-8.4
-8.4|-8.4|-7.7]-6.1

* Actions that take the agent off the grid leave the state unchanged 9.0]-8.4]-6.1] 0.0

* Reward is -1 until the terminal state is reached 0.0]-14.-20|-22.

-20.1-20.[-18.]-14.
-22.(-20.[-14.] 0.0

lterative Policy Eval for the Small Gridworld

Vi for the Greedy Policy
Random Policy wrt Vi
0.0({ 0.0({ 0.0[0.0 N ol Nl N
k=0 0.0/ 0.0/ 0.0]0.0 R S A S random
0.0 0.0l 0.0l 0.0 - | [l pollcy
ngn . . . 0.0(0.0/ 0.0] 0.0 T[T
Initial policy 7T: equiprobable random action
0.0|-1.0(-1.0]-1.0 — <117
k=1 -1.0|-1.0-1.0}-1.0 P bl
-1.0-1.0/-1.0|-1.0 T
1 2 3 1.0{-1.0]-1.0] 0.0 117
4 |5 |6 |7 R= —1 0.0|-1.7]-2.0[-2.0 — |- [
on all transitions k=2 -1.7]-2.0[-2.0[-2.0 i b,
8 |9 [10 |1 2.0]-2.0[-2.0]-1.7 bl |
aCt|0nS -2.0(-2.0]-1.7{ 0.0 ‘_I_’ i Band
12 13 |14 v=1
0.0/-2.4(-2.9]-3.0 — < [©3
k=3 2.4]2.9-3.0]-2.9 T q |,
. . . - olanlnol t L
* An undiscounted episodic task 293012924 oot
-3.0(-2.9|-2.4{ 0.0 d e
* Nonterminal states: 1, 2, ..., 14
0.0]-6.1(-8.4]-9.0 — < [©3
= . 1 .
* Terminal state: two, shown in shaded squares k=10 6.1]-77|-8.4|-84 < e opiimal
-8.4|-8.4|-7.7]-6.1 HE I ! policy
* Actions that take the agent off the grid leave the state unchanged 9.0-8.4)-6.1] 0.0 i
* Reward is -1 until the terminal state is reached 0.0]-14./-20.-22. - [~ lq
fz o0 14.]-18./-20.-20 P e |,
-20.]-20.|-18 |-14. S Pl
-22.1-20.]1-14.1 0.0 [N

Generalized Policy lteration

Generalized Policy Iteration (GPI): any interleaving of policy
evaluation and policy improvement, independent of their granularity.

evaluation
m
T V

7~ greedy(V)

improvement

A geometric metaphor for
convergence of GPI:

V*, 71'*

Generalized Policy lteration

* Does policy evaluation need to converge to Vv ?
* Or should we introduce a stopping condition
e.g. €-convergence of value function
* Or simply stop after kiterations of iterative policy evaluation?

* For example, in the small grid world k = 3 was sufficient to achieve
optimal policy

* Why not update policy every iteration? i.e. stop after k=1

This is equivalent to value iteration (next section)

Value Iteration, for estimating 7 ~ 7,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 81, arbitrarily except that V(terminal) = 0

Loop:

A+ 0

Loop for each s € &:
v+ V(s)
V(s) ¢ maxq Y, p(s',r|s,a) [r + 4V ()]
A +— max(A, v —V(s)])

until A < 6

Output a deterministic policy, m =~ 7, such that
m(s) = argmax, >, p(s',7|s,a)|r +vV ()]

Principle of Optimality

* Any optimal policy can be subdivided into two components:

An optimal first action A

Followed by an optimal policy from successor state & !

* Theorem (Principle of Optimality)

A policy m(a|s) achieves the optimal value from state s,
v(s) = vi(s), if and only if

For any state s’ reachable from s, T achieves the optimal
value from state s/, v (s") = vi(s)

Example: Shortest Path

r(s,a)= -1 except for actions entering terminal state

. . O O O . -1 -1 -1 . -1 -2 -2
0 0 0 0 1 -1 1 1 1 2 2 2

0 0 0 0 1 -1 1 1 2 2 2 2

0 0 0 0 1 -1 1 1 2 2 2 2

Problem V1 V2 V3

. -1 -2 -3 . -1 -2 -3 . -1 -2 -3 . -1 -2 -3
1 2 3 3 1 2 3 4 1 2 3 4 1 2 3 4

2 3 3 3 2 3 4 | -4 2 3 4 5 2 3 4 5

3 3 3 3 3 4 4 | -4 3 4 5 5 3 4 5 6

Bellman Optimality Backup is a Contraction

* Define the Bellman optimality backup operator F*

F*(v) = max r(a) +vT(a)v

* This operator is a 7Y -contraction, i.e. it makes value functions
closer by at least 7Y (similar to previous proof)

1E7 () = F7(v)lloo < 7l = Voo

Value lteration Converges to V.

* The Bellman optimality operator F™* has a unique fixed point
* Vi is a fixed point of F'* (by Bellman optimality equation)

* By contraction mapping theorem, value iteration converges on Vx

Synchronous Dynamic Programming Algorithms

“Synchronous” here means we
« sweep through every state s in S for each update
« don’t update V or rtuntil the full sweep in completed

Problem Bellman Equation Algorithm

lterative Policy

Prediction Bellman Expectation Equation .
Evaluation

Bellman Expectation Equation +

Greedy Policy Improvement Flolioy izt on

Control

Control Bellman Optimality Equation Value lteration

* Algorithms are based on state-value function Vﬂ(s) or Vi (S)
* Complexity O(an) per iteration, for T actions and 7T states

* Could also apply to action-value function q,r(s, a) or q*(S, a)

Asynchronous DP

* Synchronous DP methods described so far require
- exhaustive sweeps of the entire state set.
- updates to V or Q only after a full sweep

* Asynchronous DP does not use sweeps. Instead it works like this:
- Repeat until convergence criterion is met:

- Pick a state at random and apply the appropriate backup

* Still need lots of computation, but does not get locked into hopelessly
long sweeps

* (Guaranteed to converge if all states continue to be selected

* Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

Asynchronous Dynamic Programming

* Three simple ideas for asynchronous dynamic programming:
In-place dynamic programming
Prioritized sweeping

Real-time dynamic programming

In-Place Dynamic Programming

* Multi-copy synchronous value iteration stores two copies of value function

- forall sin S

Vnew(8) ¢ max ('r(s, a) + vy Z T(s'|s, a)vold(s'))

acA
s’'eS

Vold < Vnew

* In-place value iteration only stores one copy of value function

- forall sin S

v(s) + max (r(s, a) + Z T(s'|s, a)v(s'))

eA
“ s’'eS

Prioritized Sweeping

* Use magnitude of Bellman error to guide state selection, e.g.

max r(s,a) + Z T(s'|s,a)v(s") | —v(s)
s’ES

* Backup the state with the largest remaining Bellman error
* Requires knowledge of reverse dynamics (predecessor states)

* Can be implemented efficiently by maintaining a priority queue

Real-time Dynamic Programming

* Idea: update only states that the agent experiences in real world
* After each time-step Sy, A;, 7141

* Backup the state S,

v(S;) < max (T(St, a) +y Z T(s'|8t,a)v(s’))

acA
s’'eS

Sample Backups

* In subsequent lectures we will consider sample backups

* Using sample rewards and sample transitions (S, A, r,S’) ®

* Advantages:
Model-free: no advance knowledge of T or r(s,a) required
Breaks the curse of dimensionality through sampling

Cost of backup is constant, independent of n = |S|

Approximate Dynamic Programming

* Approximate the value function

* Using function approximation (e.g., neural net) {7(3, W)

* Apply dynamic programming to {,-(. ,W)

* e.g. Fitted Value lteration repeats at each iteration k,
Sample states S C S

For each state 8 € S, estimate target value using Bellman
optimality equation,

Vi (s) = max (r(s, a) + Z T(s'|s, a)ff(s',wk))

ac A
s’'eS

Train next value function \A’(° ,Wk+1) using targets {(Sa {’k(S»}

