10703 Deep Reinforcement Learning

Solving known MDPs

Tom Mitchell

September 10, 2018

Many slides borrowed from Katerina Fragkiadaki Russ Salakhutdinov

Markov Decision Process (MDP)

A Markov Decision Process is a tuple (S, A, T, r, γ)

- ${\mathcal S}$ is a finite set of states
- \mathcal{A} is a finite set of actions
- T is a state transition probability function

$$T(s'|s,a) = \mathbb{P}[S_{t+1} = s'|S_t = s, A_t = a]$$

• r is a reward function

$$r(s,a) = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

• γ is a discount factor $\gamma \in [0,1]$

Outline

Previous lecture:

• Policy evaluation

This lecture:

- Policy iteration
- Value iteration
- Asynchronous DP

Policy evaluation: for a given policy π , compute the state value function

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s \right]$$

where $v_{\pi}(s)$ is implicitly given by the **Bellman equation**

$$\mathbf{v}_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) \mathbf{v}_{\pi}(s') \right)$$

a system of |S| simultaneous equations.

Iterative Policy Evaluation

(Synchronous) Iterative Policy Evaluation for given policy $\,\pi$

- Initialize V(s) to anything
- Do until change in $\max_{s}[V_{[k+1]}(s) V_{k}(s)]$ is below desired threshold
 - for every state s, update:

$$\mathbf{v}_{[\mathbf{k+1}]}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) \mathbf{v}_{[\mathbf{k}]}(s') \right)$$

Iterative Policy Evaluation

$\mathrm{V}[k]$ for the random policy

		1 7
Delieu 🛲 eksees en en vieneksekse verdens estien	<i>k</i> = 0	$\begin{array}{c ccccc} 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \end{array}$
Policy π , choose an equiprobable random action	<i>k</i> = 1	0.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>k</i> = 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 actions 12 13 14 An undiscounted episodic task Nonterminal states: 1, 2,, 14 	<i>k</i> = 3	0.0 -2.4 -2.9 -3.0 -2.4 -2.9 -3.0 -2.9 -2.9 -3.0 -2.9 -2.4 -3.0 -2.9 -2.4 0.0
Terminal states: two, shown in shaded squaresActions that would take the agent off the grid leave the state unchanged	<i>k</i> = 10	0.0 -6.1 -8.4 -9.0 -6.1 -7.7 -8.4 -8.4 -8.4 -8.4 -7.7 -6.1 -9.0 -8.4 -6.1 0.0
 Reward is -1 until the terminal state is reached 	$k = \infty$	0.0 -142022. -14182020.

-20. -20. -18. -14. -20.

-22.

-14. 0.0

Is Iterative Policy Evaluation Guaranteed to Converge?

Contraction Mapping Theorem

Definition:

An operator F on a normed vector space \mathcal{X} is a γ -contraction, for $0 < \gamma < 1$, provided for all $x, y \in \mathcal{X}$

$$||F(x) - F(y)|| \le \gamma ||x - y||$$

Contraction Mapping Theorem

Definition:

An operator F on a normed vector space \mathcal{X} is a γ -contraction, for $0 < \gamma < 1$, provided for all $x, y \in \mathcal{X}$

$$||F(x) - F(y)|| \leq \gamma ||x - y||$$

Theorem (Contraction mapping)

For a γ -contraction F in a complete normed vector space $\mathcal X$

- Iterative application of F converges to a unique fixed point in $\mathcal X$ independent of the starting point
- at a linear convergence rate determined by γ

Value Function Sapce

- Consider the vector space V over value functions
- There are $|\mathcal{S}|$ dimensions
- Each point in this space fully specifies a value function ${
 m v}(s)$
- Bellman backup is a contraction operator that brings value functions closer in this space (we will prove this)
- And therefore the backup must converge to a unique solution

Value Function ∞ -Norm

- We will measure distance between state-value functions u and v by the $\infty\text{-norm}$
- i.e. the largest difference between state values:

$$||\mathbf{u} - \mathbf{v}||_{\infty} = \max_{s \in \mathcal{S}} |\mathbf{u}(s) - \mathbf{v}(s)|$$

Bellman Expectation Backup is a Contraction

- Define the Bellman expectation backup operator $F^{\pi}(\mathbf{v}) = r^{\pi} + \gamma T^{\pi}\mathbf{v}$
- This operator is a γ -contraction, i.e. it makes value functions closer by at least γ ,

$$\begin{split} ||F^{\pi}(\mathbf{u}) - F^{\pi}(\mathbf{v})||_{\infty} &= ||(r^{\pi} + \gamma T^{\pi}\mathbf{u}) - (r^{\pi} + \gamma T^{\pi}\mathbf{v})||_{\infty} \\ &= ||\gamma T^{\pi}(\mathbf{u} - \mathbf{v})||_{\infty} \\ &\leq ||\gamma T^{\pi}(\mathbb{1} \cdot ||\mathbf{u} - \mathbf{v}||_{\infty})||_{\infty} \\ &\leq ||\gamma (T^{\pi}\mathbb{1}) \cdot ||\mathbf{u} - \mathbf{v}||_{\infty})||_{\infty} \\ &\leq \gamma ||\mathbf{u} - \mathbf{v}||_{\infty} \end{split}$$

Note we define $\mathbb{1} \equiv [1,1,\ldots,1]^T$ Note $T^{\pi}\mathbb{1} = \mathbb{1}$ The Bellman expectation equation can be written concisely using the induced matrix form:

$$\mathbf{v}_{\pi} = r^{\pi} + \gamma T^{\pi} \mathbf{v}_{\pi}$$

with direct solution

$$\mathbf{v}_{\pi} = (I - \gamma T^{\pi})^{-1} r^{\pi}$$

of complexity $O(|S|^3)$

here T^{π} is an ISIxISI matrix, whose (j,k) entry gives P(s_k | s_j, a= π (s_j)) r^{π} is an ISI-dim vector whose jth entry gives E[r | s_j, a= π (s_j)] v_{π} is an ISI-dim vector whose jth entry gives V_{π}(s_j)

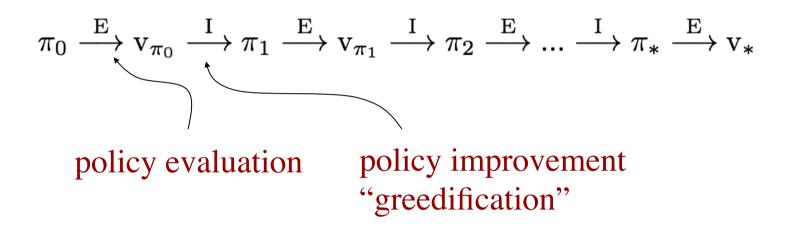
where ISI is the number of distinct states

Convergence of Iterative Policy Evaluation

- The Bellman expectation operator F^{π} has a unique fixed point
- v_{π} is a fixed point of F^{π} (by Bellman expectation equation)
- By contraction mapping theorem: Iterative policy evaluation converges on $\,v_\pi\,$

Given that we know how to evaluate a policy, how can we discover the optimal policy?

Policy Iteration



Policy Improvement

- Suppose we have computed v_π for a deterministic policy π
- For a given state s, would it be better to do an action $a \neq \pi(s)$?
- It is better to switch to action a for state s if and only if

$$q_{\pi}(s,a) > v_{\pi}(s)$$

• And we can compute $\,q_{\pi}(s,a)\,$ from v_{π} by:

$$q_{\pi}(s,a) \equiv \mathbb{E}_{\pi}[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \dots | S_t = s, A_t = a]$$

= $\mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})| S_t = s, A_t = a]$
= $r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) v_{\pi}(s')$

Policy Improvement Cont.

• Do this for all states to get a new policy $\pi' \ge \pi$ that is greedy with respect to v_{π} :

$$\begin{aligned} \pi'(s) &= \arg\max_{a} q_{\pi}(s, a) \\ &= \arg\max_{a} \mathbb{E}[R_{t+1} + \gamma \mathbf{v}_{\pi}(s') | S_t = s, A_t = a] \\ &= \arg\max r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s' | s, a) \mathbf{v}_{\pi}(s') \end{aligned}$$

- What if the policy is unchanged by this?
 - Then the policy must be optimal.

Policy Iteration

- 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$
- 2. Policy Evaluation

Repeat $\begin{array}{l} \Delta \leftarrow 0 \\ \text{For each } s \in \mathbb{S}: \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a \in \mathcal{A}} \pi(a|s) \left(r(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s,a) V(s') \right) \\ \Delta \leftarrow \max(\Delta, |v - V(s)|) \end{array}$ until $\Delta < \theta$ (a small positive number)

3. Policy Improvement policy-stable ← true
For each s ∈ S:
a ← π(s)
π(s) ← arg max r(s, a) + γΣ_{s'∈S}T(s'|s, a)v_π(s')
If a ≠ π(s), then policy-stable ← false
If policy-stable, then stop and return V and π; else go to 2

Iterative Policy Eval for the Small Gridworld

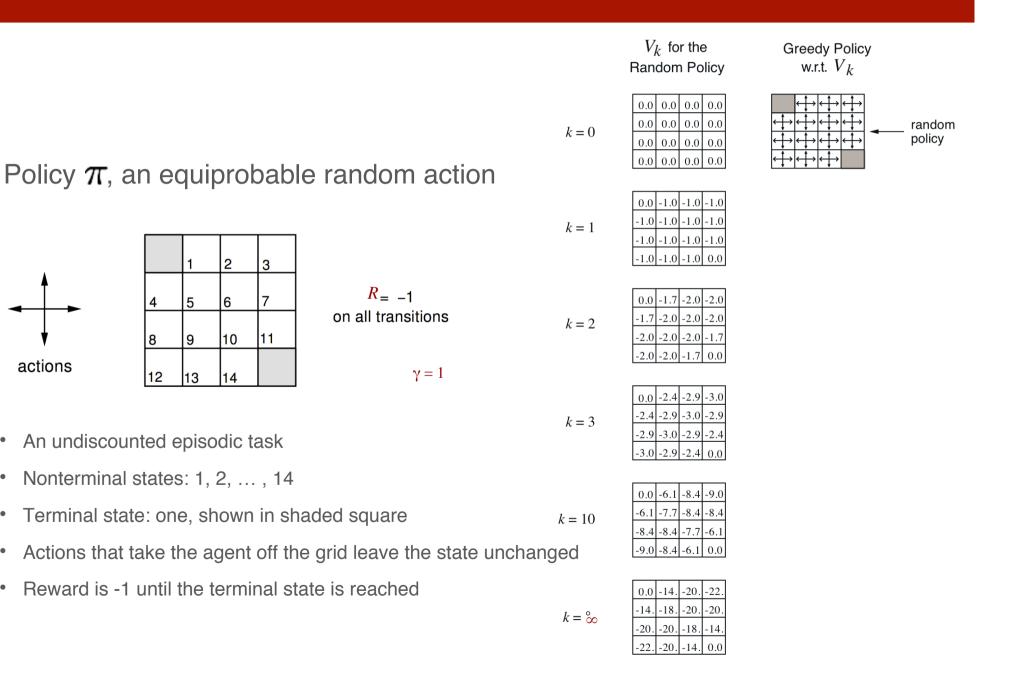
•

•

•

•

•



Iterative Policy Eval for the Small Gridworld

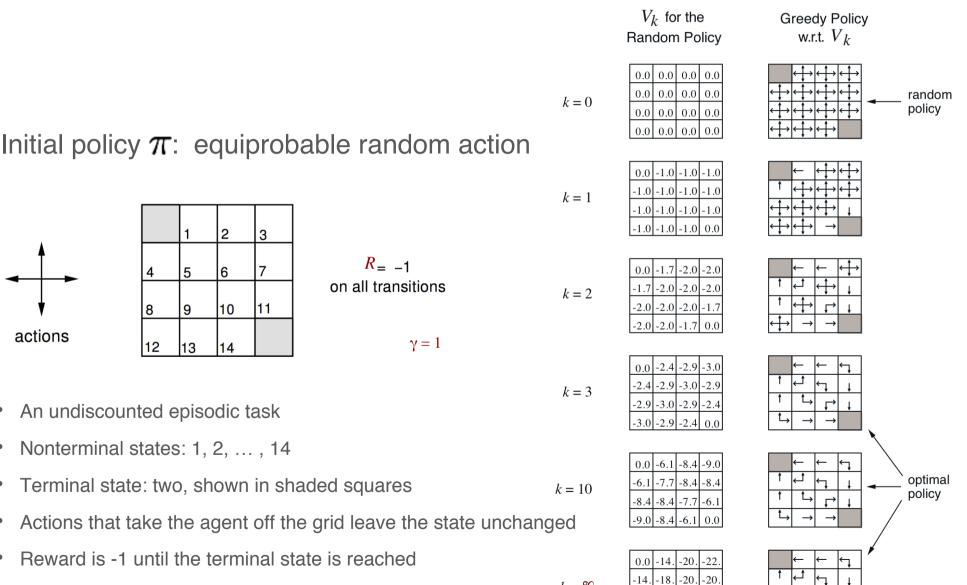
•

•

•

•

•



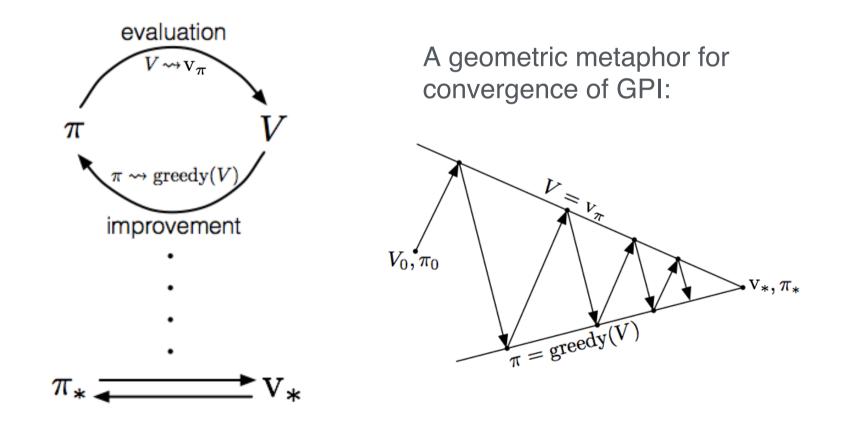
k = ∞

-20. -20. -18. -14 -22. -20. -14.

0.0

Generalized Policy Iteration

Generalized Policy Iteration (GPI): any interleaving of policy evaluation and policy improvement, independent of their granularity.



Generalized Policy Iteration

- Does policy evaluation need to converge to v_{π} ?
- Or should we introduce a stopping condition
 - e.g. ϵ -convergence of value function
- Or simply stop after *k* iterations of iterative policy evaluation?
- For example, in the small grid world *k* = 3 was sufficient to achieve optimal policy
- Why not update policy every iteration? i.e. stop after k = 1
 - This is equivalent to value iteration (next section)

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

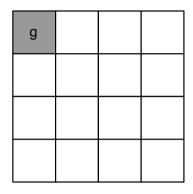
Loop:

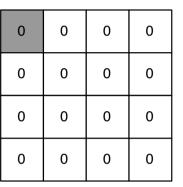
 $\begin{vmatrix} \vec{\Delta} \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S}: \\ v \leftarrow V(s) \\ V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) [r+\gamma V(s')] \\ \Delta \leftarrow \max(\Delta, |v-V(s)|) \\ \text{until } \Delta < \theta \\ \end{aligned}$ Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r+\gamma V(s')]$

Principle of Optimality

- Any optimal policy can be subdivided into two components:
 - An optimal first action \mathcal{A}_*
 - Followed by an optimal policy from successor state \mathcal{S}'
- Theorem (Principle of Optimality)
 - A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if
 - For any state s' reachable from s, π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

r(s,a) = -1 except for actions entering terminal state





0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1

0	-1	-2	-2
-1	-2	-2	-2
-2	-2	-2	-2
-2	-2	-2	-2

Problem

0	-1	-2	-3
-1	-2	-3	-3
-2	-3	-3	-3
-3	-3	-3	-3
-3	-3	-3	-3

 V_4

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

 V_5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5
V ₆			

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-6
V ₇			

Bellman Optimality Backup is a Contraction

• Define the Bellman optimality backup operator $F,^*$

$$F^*(\mathbf{v}) = \max_{a \in \mathcal{A}} r(a) + \gamma T(a) \mathbf{v}$$

• This operator is a γ -contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$||F^*(\mathbf{u}) - F^*(\mathbf{v})||_{\infty} \le \gamma ||\mathbf{u} - \mathbf{v}||_{\infty}$$

Value Iteration Converges to V_{*}

- The Bellman optimality operator F^{st} has a unique fixed point
- v_* is a fixed point of F^* (by Bellman optimality equation)
- By contraction mapping theorem, value iteration converges on $v_{\boldsymbol{\ast}}$

Synchronous Dynamic Programming Algorithms

- "Synchronous" here means we
- sweep through every state s in S for each update
- don't update V or π until the full sweep in completed

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $\, \mathrm{v}_\pi(s) \,$ or $\, \mathrm{v}_*(s) \,$
- Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $\, q_{\pi}(s,a) \,$ or $\, q_{*}(s,a) \,$

Asynchronous DP

- Synchronous DP methods described so far require
 - exhaustive sweeps of the entire state set.
 - updates to V or Q only after a full sweep
- Asynchronous DP does not use sweeps. Instead it works like this:
 - Repeat until convergence criterion is met:
 - Pick a state at random and apply the appropriate backup
- Still need lots of computation, but does not get locked into hopelessly long sweeps
- Guaranteed to converge if all states continue to be selected
- Can you select states to backup intelligently? YES: an agent's experience can act as a guide.

Asynchronous Dynamic Programming

- Three simple ideas for asynchronous dynamic programming:
 - In-place dynamic programming
 - Prioritized sweeping
 - Real-time dynamic programming

In-Place Dynamic Programming

• Multi-copy synchronous value iteration stores two copies of value function

• for all
$$s$$
 in S
 $\mathbf{v}_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) \mathbf{v}_{old}(s') \right)$
 $\mathbf{v}_{old} \leftarrow \mathbf{v}_{new}$

- In-place value iteration only stores one copy of value function
 - for all s in ${\cal S}$

$$\mathbf{v}(s) \leftarrow \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) \mathbf{v}(s') \right)$$

Prioritized Sweeping

• Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) \mathbf{v}(s') \right) - \mathbf{v}(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Real-time Dynamic Programming

- Idea: update only states that the agent experiences in real world
- After each time-step $\mathcal{S}_t, \mathcal{A}_t, r_{t+1}$
- Backup the state \mathcal{S}_t

$$\mathbf{v}(\mathcal{S}_t) \leftarrow \max_{a \in \mathcal{A}} \left(r(\mathcal{S}_t, a) + \gamma \sum_{s' \in \mathcal{S}} T(s' | \mathcal{S}_t, a) \mathbf{v}(s') \right)$$

Sample Backups

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions (S, A, r, S')
- Advantages:
 - Model-free: no advance knowledge of T or r(s,a) required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of $n = |\mathcal{S}|$

Approximate Dynamic Programming

- Approximate the value function
- Using function approximation (e.g., neural net) $\hat{v}(s, w)$
- Apply dynamic programming to $\, \hat{v}(\cdot \,, w) \,$
- e.g. Fitted Value Iteration repeats at each iteration k,
 - Sample states $ilde{\mathcal{S}} \subseteq \mathcal{S}$
 - For each state $s \in \tilde{\mathcal{S}}$, estimate target value using Bellman optimality equation,

$$\tilde{\mathbf{v}}_k(s) = \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s'|s, a) \hat{\mathbf{v}}(s', \mathbf{w}_k) \right)$$

• Train next value function $\hat{\mathrm{v}}(\cdot\,,\mathrm{w}_{k+1})$ using targets $\{\langle s, ilde{\mathrm{v}}_k(s)
angle\}$