
10703 Deep Reinforcement Learning!

Tom Mitchell

September 10, 2018

 Solving known MDPs

Many slides borrowed from !
Katerina Fragkiadaki!
Russ Salakhutdinov!

A Markov Decision Process is a tuple

•  is a finite set of states

•  is a finite set of actions

•  is a state transition probability function  

•  is a reward function  

•  is a discount factor

Markov Decision Process (MDP)!

Outline!

Previous lecture:

•  Policy evaluation

This lecture:

•  Policy iteration

•  Value iteration

•  Asynchronous DP

Policy Evaluation!

Policy evaluation: for a given policy , compute the state value
function  
 
 
where is implicitly given by the Bellman equation

a system of simultaneous equations.

Iterative Policy Evaluation!

(Synchronous) Iterative Policy Evaluation for given policy

•  Initialize V(s) to anything

•  Do until change in maxs[V[k+1](s) – Vk(s)] is below desired threshold

•  for every state s, update:

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal states: two, shown in shaded squares

•  Actions that would take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

Policy , choose an equiprobable random action

Iterative Policy Evaluation!
 for the
random policy

Is Iterative Policy Evaluation

Guaranteed to Converge?

An operator on a normed vector space is a -contraction,  
for , provided for all

 

Contraction Mapping Theorem!

Definition:

An operator on a normed vector space is a -contraction,  
for , provided for all

 
Theorem (Contraction mapping) 
For a -contraction in a complete normed vector space

•  Iterative application of converges to a unique fixed point in  
independent of the starting point

•  at a linear convergence rate determined by

Contraction Mapping Theorem!

Definition:

Value Function Sapce!

•  Consider the vector space over value functions

•  There are dimensions

•  Each point in this space fully specifies a value function

•  Bellman backup is a contraction operator that brings value
functions closer in this space (we will prove this)

•  And therefore the backup must converge to a unique solution

Value Function -Norm !

•  We will measure distance between state-value functions and
by the -norm

•  i.e. the largest difference between state values:

||\text{u}-\text{v}||_\infty = \max_{s \in \mathcal{S}}{|\text{u}(s)-\text{v}(s)|}

\begin{equation}
\begin{split}
||F^\pi(\text{u})-F^\pi(\text{v})||_\infty &=||(r^\pi+\gamma T^\pi \text{u})||_\infty - ||(r^\pi+\gamma T^\pi \text{v})||_\infty\\
&=||\gamma T^\pi (\text{u}-\text{v})||_\infty \\
& \leq ||\gamma T^\pi ||\text{u}-\text{v}||_\infty ||_\infty \\
& \leq \gamma ||\text{u}-\text{v}||_\infty
\end{split}

\end{equation}

Bellman Expectation Backup is a Contraction!

•  Define the Bellman expectation backup operator

•  This operator is a -contraction, i.e. it makes value functions closer
by at least ,

Matrix Form!

The Bellman expectation equation can be written concisely using the
induced matrix form:

with direct solution

of complexity

here T π is an |S|x|S| matrix, whose (j,k) entry gives P(sk | sj, a=π(sj))
 r π is an |S|-dim vector whose jth entry gives E[r | sj, a=π(sj)]
 vπ is an |S|-dim vector whose jth entry gives Vπ(sj)

where |S| is the number of distinct states

Convergence of Iterative Policy Evaluation!

•  The Bellman expectation operator has a unique fixed point

•  is a fixed point of (by Bellman expectation equation)

•  By contraction mapping theorem: Iterative policy evaluation
converges on

Given that we know how to evaluate a policy,

how can we discover the optimal policy?

Policy Iteration!

 policy evaluation policy improvement
“greedification”

Policy Improvement!

•  Suppose we have computed for a deterministic policy

•  For a given state , would it be better to do an action ?

•  It is better to switch to action for state if and only if

•  And we can compute from by:

q_\pi(s, a) & = \mathbb{E}[R_{t+1} + \gamma \text{v}_\pi(S_{t+1})|S_t=s,A_t=a] \\
& = r(s,a) + \gamma \sum_{s'\in \mathcal{S}} T(s'|s,a) \text{v}_\pi(s')

Policy Improvement Cont.!

•  Do this for all states to get a new policy that is greedy
with respect to :

•  What if the policy is unchanged by this?

•  Then the policy must be optimal.

\pi'(s) & = \arg\max_{a} q_\pi(s, a) \\
& = \arg\max_{a} \mathbb{E}[R_{t+1} + \gamma \text{v}_\pi(s')|S_t=s,A_t=a] \\
& = \arg\max r(s,a) + \gamma \sum_{s'\in \mathcal{S}} T(s'|s,a) \text{v}_\pi(s')

Policy Iteration!

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal state: one, shown in shaded square

•  Actions that take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

6

Iterative Policy Eval for the Small Gridworld!

∞

R

γ = 1

Policy , an equiprobable random action

•  An undiscounted episodic task

•  Nonterminal states: 1, 2, … , 14

•  Terminal state: two, shown in shaded squares

•  Actions that take the agent off the grid leave the state unchanged

•  Reward is -1 until the terminal state is reached

Iterative Policy Eval for the Small Gridworld!

∞

R

γ = 1

Initial policy : equiprobable random action

Generalized Policy Iteration!

Generalized Policy Iteration (GPI): any interleaving of policy
evaluation and policy improvement, independent of their granularity.

A geometric metaphor for
convergence of GPI:

•  Does policy evaluation need to converge to ?

•  Or should we introduce a stopping condition

•  e.g. -convergence of value function

•  Or simply stop after k iterations of iterative policy evaluation?

•  For example, in the small grid world k = 3 was sufficient to achieve
optimal policy

•  Why not update policy every iteration? i.e. stop after k = 1

•  This is equivalent to value iteration (next section)

Generalized Policy Iteration!

Principle of Optimality!

•  Any optimal policy can be subdivided into two components:

•  An optimal first action

•  Followed by an optimal policy from successor state

•  Theorem (Principle of Optimality)

•  A policy achieves the optimal value from state ,
dfsfdsfdf dsfdf , if and only if

•  For any state reachable from , achieves the optimal
value from state ,

Example: Shortest Path!
Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Example: Shortest Path

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-1

-2

-2

-1

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

0

-1

-2

-3

-1

-2

-3

-3

-2

-3

-3

-3

-3

-3

-3

-3

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-4

-3

-4

-4

-4

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-5

-3

-4

-5

-5

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-5

-3

-4

-5

-6

g

Problem V1 V2 V3

V4 V5 V6 V7

r(s,a)= -1 except for actions entering terminal state

Bellman Optimality Backup is a Contraction!

•  Define the Bellman optimality backup operator ,

•  This operator is a -contraction, i.e. it makes value functions
closer by at least (similar to previous proof)

Value Iteration Converges to V*!

•  The Bellman optimality operator has a unique fixed point

•  is a fixed point of (by Bellman optimality equation)

•  By contraction mapping theorem, value iteration converges on

•  Algorithms are based on state-value function or
•  Complexity per iteration, for actions and states
•  Could also apply to action-value function or

Synchronous Dynamic Programming Algorithms!

Problem ! Bellman Equation! Algorithm!

Prediction! Bellman Expectation Equation! Iterative Policy
Evaluation!

Control! Bellman Expectation Equation +
Greedy Policy Improvement! Policy Iteration!

Control! Bellman Optimality Equation ! Value Iteration!

“Synchronous” here means we
•  sweep through every state s in S for each update
•  don’t update V or π until the full sweep in completed

Asynchronous DP!

•  Synchronous DP methods described so far require  
- exhaustive sweeps of the entire state set. 
- updates to V or Q only after a full sweep

•  Asynchronous DP does not use sweeps. Instead it works like this:

•  Repeat until convergence criterion is met:

•  Pick a state at random and apply the appropriate backup

•  Still need lots of computation, but does not get locked into hopelessly
long sweeps

•  Guaranteed to converge if all states continue to be selected

•  Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

Asynchronous Dynamic Programming!

•  Three simple ideas for asynchronous dynamic programming:

•  In-place dynamic programming

•  Prioritized sweeping

•  Real-time dynamic programming

•  Multi-copy synchronous value iteration stores two copies of value function

•  for all in

•  In-place value iteration only stores one copy of value function

•  for all in

In-Place Dynamic Programming!

\text{v}_{new}(s) \leftarrow \max_{a \in \mathcal{A}} {\left(r(s,a) + \gamma \sum_{s'\in \mathcal{S}} T(s'|s,a) {\text{v}_{old}(s')} \right)}

Prioritized Sweeping!

•  Use magnitude of Bellman error to guide state selection, e.g.

•  Backup the state with the largest remaining Bellman error

•  Requires knowledge of reverse dynamics (predecessor states)

•  Can be implemented efficiently by maintaining a priority queue

\left\lvert \max_{a \in \mathcal{A}} {\left(r(s,a) + \gamma \sum_{s'\in \mathcal{S}} T(s'|s,a) textcolo\r{red}{\text{v}(s')} \right)} - \text{v}(s) \right\rvert

Real-time Dynamic Programming!

•  Idea: update only states that the agent experiences in real world

•  After each time-step

•  Backup the state

Sample Backups!

•  In subsequent lectures we will consider sample backups

•  Using sample rewards and sample transitions

•  Advantages:

•  Model-free: no advance knowledge of T or r(s,a) required

•  Breaks the curse of dimensionality through sampling

•  Cost of backup is constant, independent of

Approximate Dynamic Programming!

•  Approximate the value function

•  Using function approximation (e.g., neural net)

•  Apply dynamic programming to

•  e.g. Fitted Value Iteration repeats at each iteration k,

•  Sample states

•  For each state , estimate target value using Bellman
optimality equation,

•  Train next value function using targets

