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So far

The requirement of large number of samples for RL, only possible 
in simulation, renders RL a model-based framework, we can’t 
really rely (solely) on interaction in the real world (as of today)

• In the real world, we usually finetune model and policies learnt 
in simulation



Physics Simulators

The requirement of large number of samples for RL, only possible 
in simulation, renders RL a model-based framework, we can’t 
really rely (solely) on interaction in the real world (as of today)

Mujoko, bullet, gazeebo, etc.



Pros of Simulation

• We can afford many more samples!

• Safety

• Avoids wear and tear of the robot

• Good at rigid multibody dynamics



Cons of Simulation

• Under-modeling: many physical events are not modeled.

• Wrong parameters. Even if our physical equations were correct, we 
would need to estimate the right parameters, e.g., inertia, frictions 
(system identification). 

• Systematic discrepancy w.r.t.  the real world regarding:

• observations

• dynamics

as a result, policies that learnt in simulation do not transfer to the real world

• Hard to simulate deformable objects (finite element methods are very 
computational intensive)



• Domain randomization (dynamics, images)
• With enough variability in the simulator, the real world may appear 

to the model as just another variation”
• Learning not from pixels but rather from label maps-> semantic maps 

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level 

dynamics are very different between Sim and REAL

What has shown to work



Domain Randomization for Transferring Deep Neural 
Networks from Simulation to the Real World

Tobin et al., 2017 
arXiv:1703.06907

Domain randomization
for detecting and grasping objects



Cuboid Pose Estimation

Let’s try a more fine grained task



Data Generation

Data generation



Data Generation

Data generation



Model Output - Belief Maps
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Regressing to vertices



Baxter’s camera

SIM2REAL



Data - Contrast and Brightness

Data generation



Baxter’s camera

SIM2REAL



Surprising Result

SIM2REAL



Baxter’s camera

SIM2REAL



Car detection

Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization, NVIDIA

VKITTI

domain rand

data generation



Dynamics randomization



Ideas:
• Consider a distribution over simulation models instead of a single one 

for learning policies robust to modeling errors that work well under 
many ``worlds”. Hard model mining

• Progressively bring the simulation model distribution closer to the real 
world. 



Policy Search under model distribution

p: simulator parameters

Learn a policy that performs best in expectation over MDPs in the source 
domain distribution:



Policy Search under model distribution

p: simulator parameters

Learn a policy that performs best in expectation over MDPs in the source 
domain distribution:

Learn a policy that performs best in expectation over the worst \epsilon-
percentile of MDPs in the source domain distribution

Hard world model mining



Hard model mining



Hard model mining results

Hard world mining results in policies with high reward over 
wider range of parameters



Adapting the source domain distribution

Sample a set of simulation parameters from a sampling distribution S.
Posterior of parameters p_i:

Fit a Gaussian model over simulator parameters based on posterior 
weights of the samples

fit of simulation parameter samples: how probable is an observed target state-
action trajectory, the more probable the more we prefer such simulation model



Source Distribution Adaptation



Performance on hopper policies
trained on 
Gaussian 
distribution of 
mean mass 6 
and standard 
deviation 1.5trained on single source domains



Idea: the driving policy is not directly exposed to raw perceptual input or low-
level vehicle dynamics.



Main idea
pixels to steering wheel learning is not SIM2REAL transferable

• textures/car dynamics mismatch

label maps to waypoint learning is SIM2REAL transferable
• label maps are similar between SIM and REAL and a low-level controller 

will take the car from waypoint to waypoint





Maximum Entropy Reinforcement 
Learning
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Parts of slides borrowed from Russ Salakhutdinov, Rich Sutton, David Silver



RL objective

π* = arg max
π

𝔼π [∑
t

R(st, at)]



MaxEntRL objective

π* = arg max
π

𝔼π

T

∑
t=1

R(st, at)

reward

+α H(π( ⋅ |st))

entropy

Why? 

• Better exploration 

• Learning alternative ways of accomplishing the task 

• Better generalization, e.g., in the presence of obstacles a stochastic 
policy may still succeed.

Promoting stochastic policies



Principle of Maximum Entropy

Haarnoja et al., Reinforcement Learning with Deep Energy-Based Policies

Policies that generate similar rewards, should be equally probable. 

We do not want to commit to one policy over the other. 

Why? 

• Better exploration 

• Learning alternative ways of accomplishing the task 

• Better generalization, e.g., in the presence of obstacles a stochastic 
policy may still succeed.



dθ ← dθ + ∇θ′ �log π(ai |si; θ′�)(R − V(si; θ′�v)+β ∇θ′�H(π(st; θ′�)))

Mnih et al., Asynchronous Methods for Deep Reinforcement Learning

“We also found that adding the entropy of the policy π to the objective function improved exploration by 
discouraging premature convergence to suboptimal deterministic policies. This technique was originally 
proposed by (Williams & Peng, 1991)”



dθ ← dθ + ∇θ′ �log π(ai |si; θ′�)(R − V(si; θ′�v)+β ∇θ′�H(π(st; θ′�)))

Mnih et al., Asynchronous Methods for Deep Reinforcement Learning

This is just a regularization: such gradient just maximizes entropy of the current time step, not of future 
timesteps.



MaxEntRL objective

π* = arg max
π

𝔼π

T

∑
t=1

R(st, at)

reward

+α H(π( ⋅ |st))

entropy

How can we maximize such an objective?

Promoting stochastic policies



qπ(s, a) = r(s, a) + γ ∑
s′�∈𝒮

T(s′�|s, a) ∑
a′�∈𝒜

π(a′�|s′�)qπ(s′�, a′�)

Recall:Back-up Diagrams



Back-up Diagrams for MaxEnt Objective

H(π( ⋅ |s′ �)) = − 𝔼a log π(a′�|s′�)

π* = arg max
π

𝔼π

T

∑
t=1

R(st, at)

reward

+α H(π( ⋅ |st))

entropy



Back-up Diagrams for MaxEnt Objective

−log π(a′ �|s′�)

qπ(s, a) = r(s, a) + ∑
a′ �,s′�

p(s′�, r |s, a′�)(qπ(s′�, a′�)−log(π(a′�|s′�))

qπ(s, a) = r(s, a) + γ ∑
s′�∈𝒮

T(s′�|s, a) ∑
a′�∈𝒜

π(a′�|s′�)(qπ(s′�, a′�)−log(π(a′�|s′�))

π* = arg max
π

𝔼π

T

∑
t=1

R(st, at)

reward

+α H(π( ⋅ |st))

entropy



(Soft) policy evaluation

qπ(s, a) = r(s, a) + γ∑
s′�

T(s′�|s, a′�)∑
a′�

π(a′�|s′�)(qπ(s′�, a′�)−log(π(a′�|s′�))
Bellman backup equation:

Soft Bellman backup equation:

qπ(s, a) = r(s, a) + γ ∑
s′�∈𝒮

T(s′�|s, a) ∑
a′�∈𝒜

π(a′�|s′�)qπ(s′�, a′�)

Q(st, at) ← r(st, at) + γ𝔼st+1,at+1 [Q(st+1, at+1)−log π(at+1 |st+1)]]

Q(st, at) ← r(st, at) + γ𝔼st+1,at+1
Q(st+1, at+1)

Bellman backup update operator-unknown dynamics:

Soft Bellman backup update operator-unknown dynamics:



Soft Bellman backup update operator is a contraction

Q(st, at) ← r(st, at) + γ𝔼st+1,at+1 [Q(st+1, at+1)−log π(at+1 |st+1)]]

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[𝔼at+1∼π[Q(st+1, at+1) − log π(at+1 |st+1)]]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρ𝔼at+1∼π[−log π(at+1 |st+1)]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρH(π( ⋅ |st+1))

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[𝔼at+1∼π[Q(st+1, at+1) − log π(at+1 |st+1)]]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρ𝔼at+1∼π[−log π(at+1 |st+1)]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρH(π( ⋅ |st+1))

rsoft(st, at) = r(st, at) + γ𝔼st+1∼ρH(π( ⋅ |st+1))

Rewrite the reward as:

Then we get the old Bellman operator, which we know is a contraction



Soft Bellman backup update operator
Q(st, at) ← r(st, at) + γ𝔼st+1,at+1 [Q(st+1, at+1)−log π(at+1 |st+1)]]

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[𝔼at+1∼π[Q(st+1, at+1) − log π(at+1 |st+1)]]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρ𝔼at+1∼π[−log π(at+1 |st+1)]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρH(π( ⋅ |st+1))

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[𝔼at+1∼π[Q(st+1, at+1) − log π(at+1 |st+1)]]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρ𝔼at+1∼π[−log π(at+1 |st+1)]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρH(π( ⋅ |st+1))

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[V(st+1)]
We know that:

V(st) = 𝔼at∼π[Q(st, at) − log π(at |st)]

Which means that:



Soft Policy Iteration

Soft policy iteration iterates between two steps: 

1. Soft policy evaluation: Fix policy, apply Bellman backup operator till 
convergence 

This converges to qπ

qπ(s, a) = r(s, a) + 𝔼s′�,a′ �(qπ(s′�, a′�)−log(π(a′ �|s′�))

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

π′� = arg min
πk∈Π

DKL (πk( ⋅ |st) | |
exp(Qπ(st, ⋅ ))

Zπ(st) )

2.   Soft policy improvement: Update the policy:



SoftMax



Soft Policy Iteration

Leads to a sequence of policies with monotonically increasing soft q values

Soft policy iteration iterates between two steps: 

1. Soft policy evaluation: Fix policy, apply Bellman backup operator till 
convergence 

This converges to qπ

qπ(s, a) = r(s, a) + 𝔼s′�,a′ �(qπ(s′�, a′�)−log(π(a′ �|s′�))

This so far concerns tabular methods. Next we will use function approximations 
for policy and action values

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

π′� = arg min
πk∈Π

DKL (πk( ⋅ |st) | |
exp(Qπ(st, ⋅ ))

Zπ(st) )

2.   Soft policy improvement: Update the policy:



Soft Policy Iteration - Approximation
Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st) πϕ(at |st)

1.  Learning the state value function:



Soft Policy Iteration - Approximation
Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st) πϕ(at |st)

2.  Learning the state-action value function:



Soft Policy Iteration - Approximation
Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st, at) πϕ(at |st)

3.  Learning the policy:

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))
Zθ(st)

The variable w.r.t. which we take gradient parametrizes the distribution 
inside the distribution.

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼a∼πϕ(⋅|st) log
πϕ( ⋅ |st)

exp(Qπ(st, ⋅ ))
Zπ(st)

Zθ(st) = ∫𝒜
exp(Qθ(st, at))dat

independent of \phi

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))



Soft Policy Iteration - Approximation
Use function approximations for policy, state and action value functions

Vψ(st) Qθ(st) πϕ(at |st)

3.  Learning the policy:

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼a∼πϕ(⋅|st) log
πϕ( ⋅ |st)

exp(Qπ(st, ⋅ ))
Zπ(st)

Reparametrization trick. The policy becomes a deterministic function of 
Gaussian random variables (fixed Gaussian distribution):

at = fϕ(st, ϵ) = μϕ(st) + ϵΣϕ(st), ϵ ∼ 𝒩(0,I)

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D,ϵ∼𝒩(0,I) log
πϕ(at |st)

exp(Qθ(st, at))



Soft Policy Iteration - Approximation





Composability of Maximum Entropy Policies

Composable Deep Reinforcement Learning for Robotic Manipulation, Haarnoja et al.

Imagine we want to satisfy two objectives at the same time, e.g., pick an 
object up while avoiding an obstacle. We would learn a policy to maximize 
the addition of the the corresponding reward functions:

MaxEnt policies permit to obtain the resulting policy’s optimal Q by simply 
adding the constituent Qs:

We can theoretically bound the suboptimality of the resulting policy w.r.t. 
the policy trained under the addition of rewards. We cannot do this for 
deterministic policies.



Composability of Maximum Entropy Policies

Composable Deep Reinforcement Learning for Robotic Manipulation, Haarnoja et al.



https://youtu.be/wdexoLS2cWU


