
Model Based Reinforcement
Learning

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Model

s

a
s0

r

Lecture 8: Integrating Learning and Planning

Introduction

Model-Free RL

state

reward

action

At

Rt

St

Anything the agent can use to predict how the environment will respond to
its actions, concretely, the state transition T(s’|s,a) and reward R(s,a).

Model-learning

s

a
s0

r

We will be learning the model using experience tuples. A supervised learning
problem.

Learning machine
(random forest,

deep neural
network, linear

(shallow predictor)

Learning Dynamics

System identification: when we assume the dynamics
equations given and only have few unknown parameters

general parametric form (no
prior from Physics knowledge)

Newtonian Physics
equations VS

Neural networks: lots of unknown
parameters

Much easier to learn but suffers from under-
modeling, bad models

Very flexible, very hard to get it to
generalize

Observation prediction

s

a
r

Learning machine
(random forest,

deep neural
network, linear

(shallow predictor)

o o′�

Our model tries to predict the observations. Why?
Because MANY different rewards can be computed once I have access to the future visual observation,
e.g., make Mario jump, make Mario move to the right, to the left, lie down, make Mario jump on the well
and then jump back down again etc..
If I was just predicting rewards, then I can only plan towards that specific goal, e.g., win the game, same
in the model-free case.

Unroll the model by
feeding the prediction
back as input!

s

a

Our model tries to predict a (potentially latent) embedding, from which
rewards can be computed, e.g., by matching the embedding from my
desired goal image to the prediction.

Learning machine
(random forest,

deep neural
network, linear

(shallow predictor)

o
h

h′� r hg

r = exp(−∥h′�− hg∥)

Prediction in a latent space

Our model tries to predict a (potentially latent) embedding, from which
rewards can be computed, e.g., by matching the embedding from my
desired goal image to the prediction.
One such feature encoding we have seen is the one that keep from the
observation ONLY whatever is controllable by the agent.

min
θ,ϕ

. ∥T(h(s), a; θ) − h(s′�)∥ + ∥Inv(h(s), h(s′�); ψ) − a∥

T(h; θ)
h(s)

h(s′�)

s

s′ �

a

h(s)s
a

Prediction in a latent space

s

a

Our model tries to predict a (potentially latent) embedding, from which
rewards can be computed, e.g., by matching the embedding from my
desired goal image to the prediction.

Learning machine
(random forest,

deep neural
network, linear

(shallow predictor)

o
h

h′� r hg

r = exp(−∥h′�− hg∥)

Prediction in a latent space

Prediction in a latent space

s

a

Our model tries to predict a (potentially latent) embedding, from which
rewards can be computed, e.g., by matching the embedding from my
desired goal image to the prediction.

Learning machine
(random forest,

deep neural
network, linear

(shallow predictor)

o
h

h′�

Unroll the model by
feeding the prediction
back as input!

hg

r = exp(−∥h′�− hg∥)

Avoid or minimize unrolling

s

a

Unrolling quickly causes errors to accumulate. We can instead consider
coarse models, where we input a long sequences of actions and predict
the final embedding in one shot, without unrolling.

Learning machine
(random forest,

deep neural
network, linear

(shallow predictor)

o
h

h′� hg

r = exp(−∥h′�− hg∥)

Why model learning

• Online Planning at test time - Model predictive Control
• Model-based RL: training policies using simulated experience
• Efficient Exploration

Why model learning

• Online Planning at test time - Model predictive Control
• Model-based RL: training policies using simulated experience
• Efficient Exploration

Why learn the model?

Given a state I unroll my model forward and seek
the action that results in the highest reward. How
do I select this action?
1.I discretize my action space and perform tree-

search
2.I use continuous gradient descent to optimize

over actions

Why model learning

• Online Planning at test time - Model predictive Control
• Model-based RL: training policies using simulated experience
• Efficient Exploration

Given a state I unroll my model forward and seek
the action that results in the highest reward. How
do I select this action?
1.I discretize my action space and perform tree-

search
2.I use continuous gradient descent to optimize

over actions

Bachpropagate to actions

...T(s, a)

πθ(s)

ρ(s, a)

πθ(s)

s0 s1

a0 a1

T(s, a)

ρ(s, a)

r0 r1

θ Reward and dynamics are known

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

Bachpropagate to actions

...T(s, a, θ)s0 s1

a0 a1

sTT(s, a, θ)

r

No policy learned, action selection directly by backpropagating through the dynamics,
the continuous analog of online planning

Given a state I unroll my model forward and seek
the action that results in the highest reward. How
do I select this action?
1.I discretize my action space and perform tree-

search
2.I use continuous gradient descent to optimize

over actions

dynamics are frozen, we backpropagate to actions directly

Why model learning

• Online Planning at test time - Model predictive Control
• Model-based RL: training policies using simulated experience
• Efficient Exploration

s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

z

z ⇠ N (0, 1)
a = µ(s; ✓) + z�(s; ✓)

Remember: Stochastic Value Gradients V0

Bachpropagate to the policy

...T(s, a)

πθ(s)

ρ(s, a)

πθ(s)

s0 s1

a0 a1

T(s, a)

ρ(s, a)

r0 r1

θ Reward and dynamics are known

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

...

πθ(s) πθ(s)

s0 s1

a0 a1

Q(s, a)

θ
dynamics are frozen, backprogate to the policy directly by maximizing Q within a time
horizon

Q(s, a)

T(s, a, θ) T(s, a, θ)

Bachpropagate to the policy

Why model learning

• Online Planning at test time - Model predictive Control
• Model-based RL: training policies using simulated experience
• Efficient Exploration

Challenges
• Errors accumulate during unrolling
• Policy learnt on top of an inaccurate model is upperbounded by the accuracy of the

model
• Policies exploit model errors be being overly optimistic
• With lots of experience, model-free methods would always do better

Answers:
• Use model to pre-train your polic, finetune while being model-free
• Use model to explore fast, but always try actions not suggested by the model so

you do not suffer its biases
• Build a model on top of a latent space which is succinct and easily predictable
• Abandon global models and train local linear models, which do not generalize but

help you solve your problem fast, then distill the knowledge of the actions to a
general neural network policy (next week)

Model Learning
Three questions always in mind
• What shall we be predicting?

• What is the architecture of the model, what structural biases should we add to
get it to generalize?

s

a

o
h

h′�

s

a

o
h

h′�

• What is the action representation?

s

a

o
h

h′�

F

 23

Malik

How do we learn to play Billiards?

• First, we tranfer all knowledge about how objects move, that we have
accumulated so far.

• Second, we watch other people play and practise ourselves, to finetune such
model knowledge

F

 24

Malik

How do we learn to play Billiards?

 25

 26

 27

 28

 29Predictive Visual Models of Physics for Playing Billiards, K.F. et al. ICLR 2016

Learning Action-Conditioned Billiard Dynamics

 30

Q: will our model be able to generalize across different number of balls present?

Force field

Learning Action-Conditioned Billiard Dynamics

CNN

F

 31

F

World-Centric Prediction Object-Centric Prediction

Learning Action-Conditioned Billiard Dynamics

Q: will our model be able to generalize across different number of balls present?

 32

 33

 34

 35

 36

 37

 38

F

Object-centric Billiard Dynamics

CNN

ball displacement
dx

The object-centric CNN is shared across all objects in the scene.
We apply it one object at a time to predict the object’s future displacement.
We then copy paste the ball at the predicted location, and feed back as input.

 39

file:///.file/
id=6571367.7967880

Playing Billiards

 40

How should I push the red ball so that it collides with the green on?
Cme for searching in the force space

Learning Dynamics

Two good ideas so far:
1) object graphs instead of images. Such encoding allows to generalize across

different number of entities in the scene.
2) predict motion instead of appearance. Since appearance does not change,

predicting motion suffices. Let’s predict only the dynamic properties and keep
the static one fixed.

Billiards
• We predicted object displacement trajectories

s

a

o
h

h′�

• We had one CNN per object in the scene, shared the weights across objects

s

a

o
h

h′�

a

• A force applied to each object

so
h

h′�

Graph Encoding
In the Billiard case, object computations were coordinated by using a large enough
context around each object (node). What if we explicitly send each node’s
computations to neighboring nodes to be taken account when computing their
features?

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

We will encode a robotic agent as a graph, where nodes are the different bodies of
the agent and edges are the joints, links between the bodies

Graph Encoding
In the Billiard case, object computations were coordinated by using a large enough
context around each object (node). What if we explicitly send each node’s
computations to neighboring nodes to be taken account when computing their
features?

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular

velocities
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints

Graph Forward Dynamics

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Predictions: I predict only the dynamic features, their temporal difference.
Train with regression.

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular

velocities
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints
• No visual input here, much easier!

Robots as graphs
• We predicted dynamic only node features

s

a

o
h

h′�

• Our CNN is a Graph network, the node update function is shared across all
nodes (thus we can generalize across different number of nodes)

s

a

o
h

h′�

• Forces applied to each node

s

a

o
h

h′�

Graph Forward Dynamics

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Predictions: I predict only the dynamic features, their temporal difference:

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular

velocities
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints

Graph Model Predictive Control

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Learning Dynamics

Two good ideas so far:
1) object graphs instead of images. Such encoding allows to generalize across

different number of entities in the scene.
2) predict motion instead of appearance. Since appearance does not change,

predicting motion suffices. Let’s predict only the dynamic properties and keep
the static one fixed.

Visual dynamics using motion transformation

Differentiable warping

green: input, red: sampled future motion field and
corresponding frame completion

Visual dynamics using motion transformation

Visual dynamics using motion transformation

Goal representation: move certain pixel of the initial
image to desired locations

We will learn a model of pixel motion displacements

Visual dynamics using motion transformation

Differentiable warping

Can I use this model?

Visual dynamics using motion transformation

Visual dynamics using motion transformation

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.

Visual dynamics using motion transformation

https://sites.google.com/view/sna-visual-mpc

https://sites.google.com/view/sna-visual-mpc

What should we be predicting?

Do we really need to be predicting observations?

What if we knew what are the quantities that matter for the goals i care about?
For example, I care to predict where the object will end up during pushing but I
do not care exactly where it will end up, when it falls off the table, or I do not
care about its intensity changes due to lighting.

Let’s assume we knew this set of important useful to predict features. Would we do
better?
Yes! we would win the competition in Doom the minimum.

Visual dynamics using motion transformation

Main idea: You are provided with a set of measurements m paired with input
visual (and other sensory) observations.
Measurements can be health, ammunition levels, enemies killed.
Your goal can be expressed as a combination of those measurements.

measurement offsets are the prediction targets: f = (mt+τ1
− mt, ⋯, mt+τn

− mt)

(multi) goal representation: u(f, g) = g⊤f

Visual dynamics using motion transformation

Train a deep predictor. No unrolling! One shot prediction of future values:

No policy, direct action selection:

Learning dynamics of goal-related measurements

Action selection:

Training: we learn the model using \epsilon-greedy exploration policy over the
current best chosen actions.

Learning dynamics of goal-related measurements

Learning dynamics of goal-related measurements

Exploration by Planning

Skill-guided Look-ahead Exploration for Reinforcement Learning of Manipulation Policies, submitted

1. Learn a set of skills, namely, grasp, reach and transfer, using HER
2. For each skill, we have a multistep inverse model
3. For each skill, we further train a forward model T(s,g)->s’
4. In each exploration step, we look-ahead by chaining multistep skills, as opposed

to single step.

π(g, s)

Exploration by Planning

Skill-guided Look-ahead Exploration for Reinforcement Learning of Manipulation Policies, submitted

1. Learn a set of skills, namely, grasp, reach and transfer, using HER
2. For each skill, we have a multistep inverse model
3. For each skill, we further train a forward model T(s,g)->s’
4. In each exploration step, we look-ahead by chaining multistep skills, as opposed

to single step.

π(g, s)

Exploration by Planning

Skill-guided Look-ahead Exploration for Reinforcement Learning of Manipulation Policies, submitted

1. Learn a set of skills, namely, grasp, reach and transfer, using HER
2. For each skill, we have a multistep inverse model
3. For each skill, we further train a forward model T(s,g)->s’
4. In each exploration step, we look-ahead by chaining multistep skills, as opposed

to single step.

π(g, s)

