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This lecture

Exploration in Large Continuous State 
Spaces



Exploration-Exploitation

Intuitively, we explore efficiently once we know what we do not 
know, and target our exploration efforts to the unknown part of the 
space. 
All non-naive exploration methods consider some form of uncertainty 
estimation, regarding policies, Q-functions, state (or state-action) 
I have visited, or transition dynamics..

Exploration: trying out new things (new behaviours), with the hope 
of discovering higher rewards
Exploitation: doing what you know will yield the highest reward



Recall: Thompson Sampling

Represent a posterior distribution of mean rewards  
of the bandits, as opposed to mean estimates.

1. Sample from it
2. Choose action 
3. Update the mean reward distribution  ̂p(θ1, θ2⋯θk)

a = arg max
a

𝔼θ[r(a)]
θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)

The equivalent of mean expected rewards for general MDPs are Q 
functions 



Posterior sampling in deep RL

Then sample from it (Thompson sampling):

Osband et al. “Deep Exploration via Bootstrapped DQN”

How do we represent the distribution?

Represent explicitly our uncertainty in the model parameters 𝜃

A simple and very general approach is to compute an ensemble of 
models, and then sample from it:

Exploration via Posterior Sampling of Q functions

Represent a posterior distribution of Q functions,  instead of a point 
estimate. 

Then we do not need \epsilon-greedy for exploration! Better exploration 
by representing uncertainty over Q.
But how can we learn a distribution of Q functions P(Q) if Q function is 
a deep neural network?

1. Sample from P(Q)
2. Choose actions according to this Q for one 

episode
3. Update the Q distribution using the collected 

experience tuples 

a = arg max
a

Q(a, s)

Q ∼ P(Q)



Representing Uncertainty in Deep Learning

A regression network trained on X 

A bayesian regression network trained on X P(w |𝒟)

With standard regression 
networks we cannot represent our 

uncertainty



Posterior sampling in deep RL

Then sample from it (Thompson sampling):

Osband et al. “Deep Exploration via Bootstrapped DQN”

How do we represent the distribution?

Represent explicitly our uncertainty in the model parameters 𝜃

A simple and very general approach is to compute an ensemble of 
models, and then sample from it:

Exploration via Posterior Sampling of Q-functions
1. Bayesian neural networks. Estimate posteriors for the neural 
weights, as opposed to point estimates. We just saw that..
2. Neural network ensembles. Train multiple Q-function approximations 
each on using different subset of the data. A reasonable approximation to 1.

Bootstrap

Osband et al. “Deep Exploration via Bootstrapped DQN”

3. Neural network ensembles with shared backbone. Only the heads 
are trained with different subset of the data. A reasonable approximation 
to 2 with less computation.

4. Ensembling by dropout.  Randomly mask-out (zero out)neural 
network weights, to create different neural nets, both at train and test time. 
reasonable approximation to 2.



Posterior sampling in deep RL

Then sample from it (Thompson sampling):

Osband et al. “Deep Exploration via Bootstrapped DQN”

How do we represent the distribution?

Represent explicitly our uncertainty in the model parameters 𝜃

A simple and very general approach is to compute an ensemble of 
models, and then sample from it:

Exploration via Posterior Sampling of Q-functions
1. Bayesian neural networks. Estimate posteriors for the neural 
weights, as opposed to point estimates. We just saw that..
2. Neural network ensembles. Train multiple Q-function approximations 
each on using different subset of the data. A reasonable approximation to 1.

Bootstrap

Osband et al. “Deep Exploration via Bootstrapped DQN”

3. Neural network ensembles with shared backbone. Only the heads 
are trained with different subset of the data. A reasonable approximation 
to 2 with less computation.

4. Ensembling by dropout.  Randomly mask-out (zero out)neural 
network weights, to create different neural nets, both at train and test time. 
reasonable approximation to 2. (but authors showed 3. worked better than 
4.)

Deep exploration with bootstrapped DQN, Osband et al.



Bootstrap

Osband et al. “Deep Exploration via Bootstrapped DQN”

Exploration via Posterior Sampling of Q-functions

With ensembles we achieve similar things as with Bayesian nets: 
• The entropy of predictions of the network (obtained by sampling different 

heads) is high in the no data regime. Thus, Q function values will have 
high entropy there and encourage exploration. 

• When Q values have low entropy, i exploit, i do not explore.

Deep exploration with bootstrapped DQN, Osband et al.

No need for \epsilon-greedy, no exploration bonuses. 

1. Sample from P(Q)
2. Choose actions according to this Q for one 

episode
3. Update the Q distribution using the collected 

experience tuples 

a = arg max
a

Q(a, s)

Q ∼ P(Q)



Why does this work?

Osband et al. “Deep Exploration via Bootstrapped DQN”

Exploring with random actions (e.g., epsilon-greedy): random 
walk pattern, in general Ω 𝑁2 steps to visit N states. 

Exploring with random Q-functions: commit to a randomized 
but internally consistent strategy for an entire episode

+ no change to original reward function
- very good bonuses often do better

Deep exploration with bootstrapped DQN, Osband et al.

Exploration via Posterior Sampling of Q-functions



Motivation

Motivation: “Forces” that energize an organism to act and that direct its 
activity
! Extrinsic Motivation: being moved to do something because of 
some external reward ($$, a prize, etc.)
! Intrinsic Motivation: being moved to do something because it is 
inherently enjoyable (curiosity, exploration, novelty, surprise, 
incongruity, complexity…)
! Intrinsic Necessity: being moved to do something because it is 
necessary (eat, drink, find shelter from rain…)



Usually represented as a finite MDP.

Reward is extrinsic.

Usual View of RL

Extrinsic Rewards



A Less Misleading View

All reward is intrinsic.

Intrinsic Rewards

All rewards are intrinsic



Motivation

Motivation: “Forces” that energize an organism to act and that direct its 
activity
! Extrinsic Motivation: being moved to do something because of 
some external reward ($$, a prize, etc.)
! Intrinsic Motivation: being moved to do something because it is 
inherently enjoyable (curiosity, exploration, novelty, surprise, 
incongruity, complexity…)
! Intrinsic Necessity: being moved to do something because it is 
necessary (eat,drink, find shelter from rain…)



Motivation
Motivation: “Forces” that energize an organism to act and that direct its 
activity
! Extrinsic Motivation: being moved to do something because of 
some external reward ($$, a prize, etc.)-Task dependent
! Intrinsic Motivation: being moved to do something because it is 
inherently enjoyable (curiosity, exploration, novelty, surprise, 
incongruity, complexity…)-Task independent! A general loss functions 
that drives learning
! Intrinsic Necessity: being moved to do something because it is 
necessary (eat,drink, find shelter from rain…)



Curiosity VS Survival

“As knowledge accumulated about the conditions that 
govern exploratory behavior and about how quickly it 
appears after birth, it seemed less and less likely that 
this behavior could be a derivative of hunger, thirst, 
sexual appetite, pain, fear of pain, and the like, or that 
stimuli sought through exploration are welcomed 
because they have previously accompanied satisfaction 
of these drives.”

D. E. Berlyne, Curiosity and Exploration, Science, 1966



Curiosity and Never-ending Learning

Why should we care?
• Because curiosity is a general, task independent cost function, that if 

we successfully incorporate to our learning machines, it may result in 
agents that (want to)  improve with experience, like people do.

• Those intelligent agents would not require supervision by coding up 
reward functions for every little task, they would learn (almost) 
autonomously

• Curiosity-driven motivation is beyond satisfaction of hunger, thirst, and 
other biological activities (which arguably would be harder to code up 
in artificial agents..)



Curiosity-driven exploration
Seek novelty/surprise (curiosity driven exploration):

• Visit novel states s (state visitation counts)

• Observe novel state transitions (s,a)->s’ (improve transition dynamics)

We would be adding exploration reward bonuses to the extrinsics (task-
related) rewards:

Rt(s, a, s′ �) = r(s, a, s′�)

extrinsic

+ ℬt(s, a, s′�)

intrinsic

Exploration reward bonuses are non stationary: as the agent interacts with the 
environment, what is now new and novel, becomes old and known. Many methods 
consider critic networks that combine Monte Carlo returns with TD.

Independent of the task in hand!

We would then be using rewards                      in our favorite RL method.Rt(s, a, s′�)



State Visitation counts in Small MDPs

Add exploration reward bonuses that encourage policies that visit 
states with fewer counts.

What kind of bonus to use?

UCB:

Lots of functions in the literature, inspired by optimal methods for 
bandits or small MDPs

MBIE-EB (Strehl & Littman, 2008):

BEB (Kolter & Ng, 2009):
this is the one used by Bellemare et al. ‘16

Book-keep state visitation counts N(s)

Rt(s, a, s′�) = r(s, a, s′�)

extrinsic

+ ℬ(N(s))

intrinsic



State Visitation Counts in High Dimensions

• We want to come up with something that rewards states that we have 
not visited often.

• But in high dimensions, we rarely visit a state twice! 
• We need to capture a notion of state similarity, and reward states that 

are most dissimilar that what we have seen so far, as opposed to 
different (as they will always be different)

the rich natural world

Rt(s, a, s′ �) = r(s, a, s′�)

extrinsic

+ ℬ(N(s))

intrinsic



State Visitation counts and Function Approximation

• We use parametrized density estimates instead of discrete counts. 
•          :parametrized visitation density: how much we have visited state s.
• Even if we have not seen exactly the same state s, the probability can 

be high if we visited similar states. 

pθ(s)



Exploring with pseudo-counts

Bellemare et al. “Unifying Count-Based Exploration…”

State Visitation counts and Function ApproximationExploring with Pseudcounts

Unifying Count-Based Exploration and Intrinsic Motivation, Bellemare et al.

What kind of bonus to use?

UCB:

Lots of functions in the literature, inspired by optimal methods for 
bandits or small MDPs

MBIE-EB (Strehl & Littman, 2008):

BEB (Kolter & Ng, 2009):
this is the one used by Bellemare et al. ‘16



Does it work?

Bellemare et al. “Unifying Count-Based Exploration…”

https://www.youtube.com/watch?v=232tOUPKPoQ&feature=youtu.be

Unifying Count-Based Exploration and Intrinsic Motivation, Bellemare et al.



What kind of model to use?

need to be able to output densities, but doesn’t 
necessarily need to produce great samples

opposite considerations from many popular 
generative models in the literature (e.g., GANs)

Bellemare et al.: “CTS” model: condition 
each pixel on its top-left neighborhood

Other models: stochastic neural 
networks, compression length, EX2

State visitation density
pθ(s) Imagine that states s are images or short image sequences. This assigns to 

each a probability that it has been seen before.

CTS model: compute density by multiplying factors for each pixel, factors are location specific.

Generative model of images: given an image collection D, estimate a 
model that assigns a probability to a (new) image of it coming from 
collection D.



What if we use a state-of-the-art generative model of images?

 Pixel recurrent neural networks , van den Oord et al. ICML 2016

Generated images

inpainted images



Generative models of Images

We like that! We want it 
to compute probabilities, 

not to draw beautiful 
samples!



• One shot image generation (usually used in VAEs and GANs):

Generative models of ImagesImage Generation: How Machines do it  

The techniques that we learned: GANs and VAEs

Trained giant 
Feed-forward 

neural network
ത𝒛 ത𝑰𝑮

Random
latent vector

Generated 
image

…

𝑁 × 1

They attempt to generate image in one-shot projection !! 

[I. Goodfellow, 2016]

• Autoregressive image generation: Generate the image one pixel at a 
time

Advanced Generation Methods:

• Pixel-by-pixel generation:

• Iterative attentive generation: 

A simple way to iterate, employ feedback 
and capture pixel dependencies

More advanced techniques involving iterative 
formation of an abstract schema 

Trained 
recurrent 

neural 
network

Advanced Generation Methods:

• Pixel-by-pixel generation:

• Iterative attentive generation: 

A simple way to iterate, employ feedback 
and capture pixel dependencies

More advanced techniques involving iterative 
formation of an abstract schema 

Advanced Generation Methods:

• Pixel-by-pixel generation:

• Iterative attentive generation: 

A simple way to iterate, employ feedback 
and capture pixel dependencies

More advanced techniques involving iterative 
formation of an abstract schema 



Bayes Theorem: 

A sequential model!

Intuition

Pixel recurrent neural networks, ICML 2016

Autoregressive Image generation

Pixel RNN: a neural networks that sequentially predicts the pixels in the image 



softmax layer

sLSTM-2

sLSTM-1

pixels

pixelsSpatial 
LSTM

Adapted from: Generative image modeling using 
spatial LSTM. Theis & Bethge, 2015

Intuition

• Question: Can we use plain-LSTM to generate images pixels by pixels? 

• Ensure information is well propagated 

in two dimensions

• spatial LSTM (sLSTM)

Pixel recurrent neural networks, ICML 2016

the pixel i am estimating the value for

the pixel that have already been predicted, and on which our LSTM is conditioning

Spatial LSTM



sLSTM-2

sLSTM-1

softmax layer

pixels

pixelsSpatial 
LSTM

Adapted from: Generative image modeling using 
spatial LSTM. Theis & Bethge, 2015

Spatial LSTM

Intuition

• Question: Can we use plain-LSTM to generate images pixels by pixels? 

• Ensure information is well propagated 

in two dimensions

• spatial LSTM (sLSTM)

Pixel recurrent neural networks, ICML 2016

the pixel i am estimating the value for

the pixel that have already been predicted, and on which our LSTM is conditioning

Too slow, no parallelization: I 
update the pixels one by one.



Details about Soft Max

• Treat pixels as discrete variables:
• To estimate a pixel value, do classification in 

every channel (256 classes indicating pixel 
values 0-255)

• Implemented with a final softmax layer

Figure: Example softmax outputs in the final layer, 
representing probability distribution over 256 classes.

Figure from: Oord et al.

Multinomial Distribution for Pixel Value



PixelRNN: A specific Multidimensional LSTM

…
n

n

softm
axlayer

image sLSTM-1 sLSTM-2 sLSTM-12

RowLSTM

Pixel recurrent neural networks, ICML 2016

Pixel RNN



First LSTM Layer

Image layer

Pixel recurrent neural networks, ICML 2016

Row LSTM



PixelRNN: A specific Multidimensional LSTM

…
n

n

softm
axlayer

image sLSTM-1 sLSTM-2 sLSTM-12

Diagonal LSTM

Pixel recurrent neural networks, ICML 2016

Pixel RNN



Diagonal LSTM

• To optimize, we skew the feature maps so it can be parallelized

Pixel recurrent neural networks, ICML 2016

Diagonal LSTM



PixelCNN

…
n

n

softm
axlayer

image Conv-1 Conv-2 Conv-15

Pixel CNN



PixelCNN

• 2D convolution on previous layer
• Apply masks so a pixel does not see future pixels (in sequential order)

Pixel recurrent neural networks, ICML 2016

Pixel CNN



Comparison

PixelCNN PixelRNN – Row LSTM PixelRNN – Diagonal BiLSTM
Full dependency field Triangular receptive field Full dependency field

Fastest Slow Slowest
Worst log-likelihood - Best log-likelihood

Figure from: Oord et al.

Comparison



Better density estimation usually helps



Frame preprocessing: shrink and convert to grayscale

Better density estimation helps



Counting with hashes
What if we still count states, but in a different space?

Tang et al. “#Exploration: A Study of Count-Based Exploration”

State Counting with DeepHashing
• We still count states (images) but not in pixel space, but in latent 

compressed space.
• Compress s into a latent code, then count occurrences of the code.
• How do we get the image encoding? E.g, using autoencoders. 

#Exploration- A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.

• There is no guarantee such reconstruction loss will capture the 
important things that make two states to be similar or not policy wise..



State Counting with DeepHash

#Exploration- A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.

Counting with hashes
What if we still count states, but in a different space?

Tang et al. “#Exploration: A Study of Count-Based Exploration”

• We still count states (images) but not in pixel space, but in latent 
compressed space.

• Compress s into a latent code, then count occurrences of the code.
• How do we get the image encoding? E.g, using autoencoders. 



If the organism carries a `small scale model’ of 
external reality and its own possible  actions 
within its head, it is able try out various 
alternatives, conclude which is the best of 
them, react to future situations before they 
arise, utilize the knowledge of the past in 
dealing with present and the future, and in 
every way react in much fuller, safer and more 
competent manner to emergencies which face 
it. 

-- Kenneth Craik, 1943, Chapter 5, page 61

[credit: Jitendra Malik]

Mental models

This will come when we talk about model-baser RL, but for now we will use 
models for exploration!



Computational Curiosity
• “The direct goal of curiosity and boredom is to 

improve the world model. The indirect goal is to ease 
the learning of new goal-directed action sequences.”

• “The same complex mechanism which is used for 
‘normal’ goal-directed learning is used for 
implementing curiosity and boredom. There is no 
need for devising a separate system which aims at 
improving the world model.”

• “Curiosity Unit”: reward is a function of the mismatch 
between model’s current predictions and actuality. 
There is positive reinforcement whenever the system 
fails to correctly predict the environment.

• “Thus the usual credit assignment process ... 
encourages certain past actions in order to repeat 
situations similar to the mismatch situation.” (planning 
to make your (internal) world model to fail) 

Jurgen Schmidhuber, 1991, 1991, 1997



Reward Prediction Error

Add exploration reward bonuses that encourage policies to visit states 
that will cause the prediction model to fail.

Compute state visitation (pseudo)counts N(s)

Seek novelty/surprise:

• Visit novel states s (state visitation counts)

• Observe novel state transitions (s,a)->s’ (improve transition dynamics)

Rt(s, a, s′�) = r(s, a, s′�)

extrinsic

+ ℬt(∥T(s, a; θ) − s′�∥)

intrinsic
Exploration reward bonuses are non stationary: as the agent interacts with the 
environment, what is now new and novel, becomes old and known. Many methods 
consider critic networks that combine Monte Carlo returns with TD.



Learning Visual Dynamics

min
θ

. ∥T(s, a; θ) − s′�∥
s

a

s′�

Exploration reward bonus ℬt(s, a, s′�) = ∥T(s, a; θ) − s′�∥

Rt(s, a, s′�) = r(s, a, s′�)

extrinsic

+ ℬt(s, a, s′�)

intrinsic

Here we predict the visual observation!



• Train a neural network that given an image (sequence) and an action, 
predict the pixels of the next frame

• Unroll it forward in time to predict multiple future frames
• Use this frame prediction to come up with an exploratory behavior in 

DQN: choose the action that leads to frames that are most dissimilar 
to a buffer of recent frames



Progressively increase k (the length of the conditioning history) so that we do not feed garbage predictions 
as input to the predictive model:

Unroll the model by 
feeding the prediction 
back as input!

Frame prediction

Multiplicative interactions 
between action and hidden 
state (not concatenation):

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.



Small objects are missed, e.g., the bullets. It is because they induce a 
tiny mean pixel prediction loss (despite the fact they may be task-
relevant)



Frame prediction for Exploration

Minimize similarity to a trajectory memory



Predicting Raw Sensory Input (Pixels)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

Should our prediction model be predicting the input observations?
• Observation prediction is difficult especially for high dimensional 

observations. 
• Observation contains a lot of information unnecessary for planning, 

e.g., dynamically changing backgrounds that the agent cannot 
control and/or are irrelevant to the reward. 



Learning Visual Dynamics

What is the problem with this optimization problem?

There is a trivial solution :-(

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥T(E(s; ϕ); θ)
E(s; ϕ)

E(s′�; ϕ)

s

s′�

a

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

Exploration reward bonus ℬt(s, a, s′�) = ∥T(E(s; ϕ), a; θ) − E(s′ �; ϕ)∥



Incentivizing exploration in RL with deep predictive models, Stadie et al.

• Let’s learn image encoding using autoencoders (to avoid the trivial 
solution)

• …and suffer the problems of autoencoding reconstruction loss that has 
little to do with our task

T(E(s; ϕ); θ)
E(s; ϕ)

E(s′�; ϕ)

s

s′�

a

Learning Visual Dynamics

s

E(s; ϕ)

s

Autoencoding loss: min
ϕ

. ∥D(E(s; ϕ), ω) − s∥

̂s = D(E(s; ϕ), ω)

min
θ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

Exploration reward bonus ℬt(s, a, s′�) = ∥T(E(s; ϕ), a; θ) − E(s′ �; ϕ)∥



Explore guided by Novelty of Transition Dynamics

Such reward normalization is very important! 
Because exploration rewards during training 
are non-stationary, such scale normalization 

helps accelerate learning. 

Incentivizing exploration in RL with deep predictive models, Stadie et al.

Rt(s, a, s′�) = r(s, a, s′�)

extrinsic

+ ℬt(s, a, s′�)

intrinsic

It uses the autoencoder solution.

The autoencoder is trained as data arrives



Curiosity driven exploration with self-supervised prediction, Pathak et al.

• Let’s couple forward and inverse models (to avoid the trivial solution)
• …then we will only predict things that the agent can control

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥ + ∥Inv(E(s; ϕ), E(s; ϕ); ψ) − a∥

T(E(s; ϕ); θ)
E(s; ϕ)

E(s′�; ϕ)

s

s′�

a

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥
E(s; ϕ)s

a

Learning Visual Dynamics
Exploration reward bonus ℬt(s, a, s′�) = ∥T(E(s; ϕ), a; θ) − E(s′ �; ϕ)∥



• Let’s use random neural networks (networks initialized randomly and 
frozen thereafter)

• …and be embarassed about how well it works on Atari games

Learning a Transition function

min
θ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥ + ∥Inv(E(s; ϕ), E(s; ϕ); θ) − a∥

T(E(s; ϕ); θ)
E(s; ϕ)

E(s′�; ϕ)

s

s′�

a

Large-scale study of Curiosity-Driven Learning, Burda et al.

Learning Visual Dynamics
Exploration reward bonus ℬt(s, a, s′�) = ∥T(E(s; ϕ), a; θ) − E(s′ �; ϕ)∥



Large-scale study of Curiosity-Driven Learning, Burda et al.

Task Versus Exploration rewards

R(s, a, s′�) = r(s, a, s′�)

extrinsic

Rt(s, a, s′�) = r(s, a, s′�)

extrinsic

+ ℬt(s, a, s′�)

intrinsic

Rt(s, a, s′�) = rT(s, a, s′�)

extrinsic terminal

+ ℬt(s, a, s′�)

intrinsic

Rt(s, a, s′�) = ℬt(s, a, s′�)

intrinsic

Only task reward:

Exploration reward bonus ℬt(s, a, s′�) = ∥T(E(s; ϕ), a; θ) − E(s′ �; ϕ)∥

Task+curiosity:

Sparse task + curiosity:

Only curiosity:



No(extrinsic)rewardRL is not new

Itti, L., Baldi, P.F.: Bayesian surprise attracts human attention. In: NIPS’05. pp.
547–554 (2006)
Schmidhuber, J.: Curious model-building control systems. In: IJCNN’91. vol. 2,
pp. 1458–1463 (1991)
Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990-
2010). Autonomous Mental Development, IEEE Trans. on Autonomous Mental
Development 2(3), 230–247 (9 2010)
Singh, S., Barto, A., Chentanez, N.: Intrinsically motivated reinforcement learning.
In: NIPS’04 (2004)
Storck, J., Hochreiter, S., Schmidhuber, J.: Reinforcement driven information ac-
quisition in non-deterministic environments. In: ICANN’95 (1995)
Sun, Y., Gomez, F.J., Schmidhuber, J.: Planning to be surprised: Optimal bayesian
exploration in dynamic environments (2011), http://arxiv.org/abs/1103.5708



Curiosity-Driven Exploration Pathak et al. 2017

Relative performance improves as reward sparseness increases.

Curiosity helps even more when rewards are sparse 

Curiosity driven exploration with self-supervised prediction, Pathak et al.

Conclusions
• Using curiosity as a reward results in policies that collect much higher 

task rewards than policies trained under task reward alone - so curiosity 
(as prediction error) a good proxy for task rewards

• Random features do as good as learned features



Testing on Level-3Trained on Level-1 Testing on Level-2

Policy Transfer

Large-scale study of Curiosity-Driven Learning, Burda et al.

Policies trained with A3C using only curiosity rewards
Prediction error using forward/inverse model coupling



Agent will be rewarded even though the model cannot improve. 
So it will focus on parts of environment that are inherently 
unpredictable.

Limitation of Prediction Error

If we give the agent a TV and a remote, it becomes a couch potato!

The agent is attracted forever in the most noisy states, with 
unpredictable outcomes.

Large-scale study of Curiosity-Driven Learning, Burda et al.



How can we fix this?
A deterministic regression network, when faced with multimodal outputs, 
predicts the mean…this is the least squares solution..This will always 
cause out network to have high prediction error, high surprise, high 
norm of the gradient, but no learning progress…

y

How can we handle stochasticity?
We either need to add stochastic units in our network or stochastic 
weights (Bayesian deep network)



Learning Stochastic Visual Dynamics

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

E(s; ϕ)

E(s′�; ϕ)

s

s′�

a

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥
Exploration reward bonus ℬt(s, a, s′�) = ∥ min

z
T(E(s; ϕ), a; θ, z) − E(s′�; ϕ)∥

z = μ(s, a; θ) + Σ(μ, a; θ)1/2ϵ, ϵ ∼ 𝒩(0,1)

We add a layer with stochastic units z, then combine those units with the 
rest of the network. 

Exploration reward bonus ℬt(s, a, s′�) = ∥𝔼zT(E(s; ϕ), a; θ, z) − E(s′�; ϕ)∥



Learning Stochastic Visual Dynamics

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

Exploration reward bonus ℬt(s, a, s′�) = ∥ min
θ

T(E(s; ϕ), a; θ) − E(s′ �; ϕ)∥

Exploration reward bonus ℬt(s, a, s′�) = ∥𝔼θT(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

How do we train those models?

E(s; ϕ)

E(s′�; ϕ)

s

s′�

a
θ ∼ P(θ |𝒟)

We use stochastic weights instead of deterministic. Each weight is 
sampled from a distribution.



Training Networks with Stochastic Units

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

E(s; ϕ)s

a
z = μ(s, a; θ) + Σ(μ, a; θ)1/2ϵ, ϵ ∼ 𝒩(0, I )

s′�

f (z) =
z

10
+

z
∥z∥

z ∼ 𝒩(0, I)

Why such simple gaussian noise suffices to create complex 
stochastic outputs? The neural net will transform it to an arbitrarily 
complex distribution!

Tutotial on variational Autoencoders, Doersch



Training Networks with Stochastic Units

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

We want to learn a mapping from z to the output X, usually we assume a Gaussian distribution to 
sample every pixel from:

P(X |z; θ) = 𝒩(X | f (z; θ), σ2 ⋅ I )

(we already know how to 
take gradients here!)min

θ
. ∑

j

− log P(Xj) = − ∑
j

∑
zi∼𝒩(0,I )

log P(Xj |z; θ) = − ∑
j

∑
zi∼𝒩(0,I )

∥f (zi; θ) − Xj∥2

What if we forget that it is intractable and approximate it with few samples?

This is a bad approximation, except if we have a very large number of zs. Only few zs would produce 
after training reasonable X. How will we find the zs that produce good X?

z ∼ 𝒩(0, I )

Let’s forget for now the conditioning part and 
imagine we want to learn a good generative 
models of images. 
Each sample z should give me a realistic image 
X once it passes through the neural network

max
θ

. P(X) = ∫ P(X |z; θ)P(z)dz

Let’s maximize data likelihood. This requires an intractable integral, too many zs..

Motion Prediction Under Multimodality with Conditional Stochastic Networks, Google 



Deep Variational Inference

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

DKL(Q(z |X) | |P(z |X)) = ∫ Q(z |X)log
Q(z |X)
P(z |X)

dz

= 𝔼Q log Q(z |X) − 𝔼Q log P(z |X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)

= 𝔼Q log Q(z |X) − 𝔼Q log
P(X |z)P(z)

P(X)
= 𝔼Q log Q(z |X) − 𝔼Q log P(X |z) − 𝔼Q log P(z) + log P(X)
= DKL(Q(z |X) |P(z)) − 𝔼Q log P(X |z) + log P(X)

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

Let’s consider sampling zs from an alternative distribution Q(z) and try to minimize the KL between this 
(variational approximation) and the true posterior, P(z|X). And because I can pick any distribution Q I 
like, I will also condition it on X to help inform the sampling. 

encoder
decoder

𝔼Q log P(X |z) − DKL(Q(z |X) |P(z)) = log P(X) − DKL(Q(z |X) | |P(z |X))



Variational Autoencoder

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

From left to right: re-parametrization trick!

min
ϕ,θ

. DKL(Q(z |X; ϕ) | |P(z)) − 𝔼Q log P(X |z; θ)

encoder
decoder

Tutotial on variational Autoencoders, Doersch



Variational Autoencoder

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

Auto-Encoding Variational Bayes, Kingma and Welling

But wait: can i use this now to sample future frames? Shouldn’t my sampling be conditioned on 
the current state and action?

At test time



Conditional VAE

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

min
ϕ

. DKL(Q(z |X, Y ) | |P(z |𝒟) = min
ϕ

. DKL(Q(z |X, Y ) |P(z)) − 𝔼Q log P(𝒟 |z)

Tutotial on variational Autoencoders, Doersch

X : (st, at) Y : st+1
Conditioning



min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

min
ϕ

. DKL(Q(z |X, Y ) | |P(z |𝒟) = min
ϕ

. DKL(Q(z |X, Y ) |P(z)) − 𝔼Q log P(𝒟 |z)

Conditional VAE

Motion Prediction Under Multimodality with Conditional Stochastic Networks, Google 

For future trajectory and frame prediction



Bayesian Deep Networks

regression network

 bayesian regression network P(w |𝒟)

Bayesian nets for:
• representing uncertainty (I have not seen this datapoint)
• representing multimodal outputs (i have seen this datapoint 

but it has had multiple different labels)



Variational Inference for Bayesian Neural Networks

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

DKL(Q(θ |ϕ) | |P(θ |𝒟)) = ∫ Q(θ |ϕ)log
Q(θ |ϕ)
P(θ |𝒟)

dθ

= 𝔼Q log Q(θ |ϕ) − 𝔼Q log P(θ |𝒟)

= 𝔼Q log Q(θ |ϕ) − 𝔼Q log
P(𝒟 |θ)P(θ)

P(𝒟)

= 𝔼Q log Q(θ |ϕ) − 𝔼Q log
P(𝒟 |θ)P(θ)

P(𝒟)
= 𝔼Q log Q(θ |ϕ) − 𝔼Q log P(𝒟 |θ) − 𝔼Q log P(θ) + log P(𝒟)
= DKL(Q(θ |ϕ) |P(θ)) − 𝔼Q log P(𝒟 |θ) + log P(𝒟)

min
ϕ

. DKL(Q(θ |ϕ) | |P(θ)) − 𝔼Q log P(𝒟 |θ)

Variational approximation to the Bayesian posterior distribution of the weights.

weight complexity data likelihood



Variational Inference for Bayesian Neural Networks

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

min
ϕ

. DKL(Q(θ; ϕ) | |P(θ |𝒟)) = min
ϕ

. DKL(Q(θ |ϕ) | |P(θ)) − 𝔼Q log P(𝒟 |θ)

Variational approximation to the Bayesian posterior distribution of the weights.

weight complexity data likelihood

∇ϕ(DKL(Q(θ |ϕ) | |P(θ)) − 𝔼Q log P(𝒟 |θ)) = ∇ϕ(𝔼Q(θ|ϕ) log
Q(θ |ϕ)

P(θ)
− 𝔼Q(θ|ϕ) log P(𝒟 |θ))

= ∇ϕ𝔼Q(θ|ϕ) (log
Q(θ |ϕ)

P(θ)
− log P(𝒟 |θ))

Let’s try to take gradients:

The parameter is in the distribution! Reparametrization to the rescue:

θ = t(ϕ, ϵ) = μϵ + σ, ϵ ∼ 𝒩(0,I )

We will consider Q to be a diagonal gaussian distribution: ϕ = (μ, σ)

We will consider prior P(\theta) to be a mixture of 0 mean gaussians:

P(θ) = ∏
k

π𝒩(θk |0,σ2
1) + (1 − π)𝒩(θk |0,σ2), π, σ1, σ2 are chosen and fixed

Weight Uncertainty in Neural Networks, Blundell et al.



Variational Inference for Bayesian Neural Networks

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

∇ϕ(DKL(Q(θ |ϕ) | |P(θ)) − 𝔼Q log P(𝒟 |θ)) = ∇ϕ(𝔼Q(θ|ϕ) log
Q(θ |ϕ)

P(θ)
− 𝔼Q(θ|ϕ) log P(𝒟 |θ))

= ∇ϕ𝔼Q(θ|ϕ) (log
Q(θ |ϕ)

P(θ)
− log P(𝒟 |θ))

Let’s try to take gradients:

The parameter is in the distribution! Reparametrization to the rescue:

We will consider Q to be a diagonal gaussian distribution: ϕ = (μ, σ)

We will consider prior P(\theta) to be a mixture of 0 mean gaussians:

P(θ) = ∏
k

π𝒩(θk |0,σ2
1) + (1 − π)𝒩(θk |0,σ2), π, σ1, σ2 are chosen and fixed

1.Sample \epsilon
2.Form \theta
3.Take gradients w.r.t. \phi
4.Update \phi

θ = t(ϕ, ϵ) = μϵ + σ, ϵ ∼ 𝒩(0,I )

Weight Uncertainty in Neural Networks, Blundell et al.



Variational Inference for Bayesian Neural Networks

min
θ,ϕ

. ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

T(E(s; ϕ); θ)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

∇ϕ(DKL(Q(θ |ϕ) | |P(θ)) − 𝔼Q log P(𝒟 |θ)) = ∇ϕ(𝔼Q(θ|ϕ) log
Q(θ |ϕ)

P(θ)
− 𝔼Q(θ|ϕ) log P(𝒟 |θ))

= ∇ϕ𝔼Q(θ|ϕ) (log
Q(θ |ϕ)

P(θ)
− log P(𝒟 |θ))

Let’s try to take gradients:

Weight Uncertainty in Neural Networks, Blundell et al.

The parameter is in the distribution! Reparametrization to the rescue:

We will consider Q to be a diagonal gaussian distribution: ϕ = (μ, σ)

We will consider prior P(\theta) to be a mixture of 0 mean gaussians:

P(θ) = ∏
k

π𝒩(θk |0,σ2
1) + (1 − π)𝒩(θk |0,σ2), π, σ1, σ2 are chosen and fixed

1.Sample \epsilon
2.Form \theta
3.Take gradients w.r.t. \phi
4.Update \phi

θ = t(ϕ, ϵ) = μϵ + σ, ϵ ∼ 𝒩(0,I ) They used it for Thompson sampling!



! Instead of rewarding prediction errors, reward prediction
improvements.
! “My adaptive explorer continually wants ... to focus on those 
novel things that seem easy to learn, given current knowledge. It 
wants to ignore (1) previously learned, predictable things, (2) 
inherently unpredictable ones (such as details of white noise on 
the screen), and (3) things that are unexpected but not expected 
to be easily learned (such as the contents of an advanced math 
textbook beyond the explorer’s current level).”

Reward Learning Progress

Jurgen Schmidhuber, 1991, 1991, 1997



Learning Progress

Straightforward implementation of learning progress: 
• Keep a buffer of experience tuples, 
• update your model with the new transitions, 
• evaluate the reduction of your prediction error in the buffer 
• Assign reward based on such reduction



Curiosity-driven Exploration

Basic idea: Seeking out state-action regions relatively
unexplored [Schmidhuber 1991]

• Environment dynamics modeled as p(st+1|st, at; ✓)
• Taking actions that maximize the reduction in uncertainty about the
dynamics X

t

⇥
H(⇥|⇠t, at)�H(⇥|st+1, ⇠t, at)

⇤

where ⇠t = {s1, a1, . . . , st} corresponds to the history up to time t

• Interpretation using mutual information between st+1 and ⇥

I(st+1;⇥|⇠t, at) = Est+1⇠P(·|⇠t,at){DKL
⇥
p(✓|⇠t, at, st+1) || p(✓|⇠t)

⇤
| {z }

Information Gain

}

4

Learning progress using Bayesian Neural dynamics

VIME: Variational Information Maximizing Exploration, Houthooft et al.

How much the weight distribution changes based on the newly observed  transition



Variational Bayes

• Posterior via Bayes’ rule

p(✓|⇠t, at, st+1) =
p(✓|⇠t) p(st+1|⇠t, at; ✓)

p(st+1|⇠t, at)

where

p(st+1|⇠t, at) =
Z

⇥
p(st+1|⇠t, at; ✓) p(✓|⇠t)d✓

• Approximating p(✓|D) with q(✓;�)

• The total reward is then approximated as

r
0(st, at, st+1) = r(st, at) + ⌘DKL

⇥
q(✓|�t+1) || q(✓|�t)

⇤

7

Variational Approximation for the Posterior of the Weights

VIME: Variational Information Maximizing Exploration, Houthooft et al.

Neural Networks Implementation

The Bayesian nerual network (BNN) [Blundell et al. 2015]

• Modeling p(st+1|st, at; ✓)
• The weight distribution parameterized by �

q(✓;�) =

|⇥|Y

i=1

N (✓i|µi,�
2
i )

• Feedforward network structure and ReLU nonlinearity between hidden
layers

• Trained by maximizing the variational lower bound using Backprop

L[q(✓;�), D] = E✓⇠q(·;�)[log p(D|✓)]�DKL[q(✓;�)||p(✓)]

8



Experiments



Curiosity only learning on real robots

Intrinsically motivated model learning for developing curious robots,  Hester and Stone

1. Learn a transition function (random forest)
2. Learn a reward function based on curiosity: a) state density 

2) entropy of the tree predictions. 
3. Online planning (similar to MCTS) using the learned model!

to pick actions that generate large rewards
4. Update the model with the collected experience



Curiosity-guided model learning

This is a random forest

Transition novelty

State novelty



Curiosity only learning on real robots

Intrinsically motivated model learning for developing curious robots,  Hester and Stone

• Actions: The agent controls the robot’s two right shoulder joints. It can 
increase the angle of either joint by 8 degrees, decrease the angle of 
either joint by 8 degrees, or do nothing. 

• State: the angle of both shoulder joints, the 3-dimensional location of 
the robot’s hand in mm relative to its chest, how many pink pixels the 
robot can see in its camera image, whether its right foot button is 
pressed, and the amount of energy it hears on its microphone 



Curiosity-guided model learning

Intrinsically motivated model learning for developing curious robots,  Hester and Stone

• After the exploration stage, we have built a model and now we use it 
trying to maximize specific extrinsic rewards! (as opposed to curiosity 
rewards) using the same online planning. 

• And yes, the model we built with exploration is better than what we 
built by trying out random actions, in that, it allows us to succeed to 
such new extrinsic tasks.



More on model-based RL on Wednesday


