10703 Deep Reinforcement Learning

Policy Gradient Methods — Part 3

Tom Mitchell
October 8, 2018

Recommended readings: next slide.
(not covered in Barto & Sutton)

Used Materials

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Ruslan Salakhutdinov, who in turn borrowed from
Rich Sutton’s RL class and David Silver’'s Deep RL tutorial

Recommended Readings on Natural Policy Gradient
and Convergence of Actor-Critic Learning

Bhatnagar, S., Sutton, R., Ghavamzadeh, M., Lee, M. (2009). Natural actor—critic algorithms.
Automatica, 45(11).

Grondman, 1., Busoniu, L., Lopes, G. A., Babuska, R. (2012). A survey of actor—critic reinforce-
ment learning: Standard and natural policy gradients. I[EEFE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), }2(6):1291-1307.

Kakade, S. M. (20(5‘2). A natural policy gradiéni:. In Advances in Neural Information Processing
Systems 14 (NIPS 2001), pp. 1531-1538. MIT Press, Cambridge, MA.

Peters, J., Schaal, S. (2008) Natural actor—critic. Neurocomputing, 71(7):1180-1190.

Recall the Policy Gradient Theorem:

lg

Vo (mg) = Z d"(s) Z Q" (s,a)Vomo(s,a)

where d™(s) is distribution over states generated by following my(s, a)

We can rewrite the Policy Gradient Theorem in several forms:

Vomy(s, a)

mo(s, a)

V()J(ﬂ'())

Y d™(s) Y m(s,a) Q"(s,a)
| Vomo(s, a)]

(s, a)

= F, [Q“” (s,a)

= FE., Q" (s,a) Volnmy(s,a)l

Actor-Critic

Monte-Carlo policy gradient still has high variance

v

v

We can use a critic to estimate the action-value function:
~ T
Qu(s,a) =~ Q™ (s, a)

» Actor-critic algorithms maintain two sets of parameters

- Critic Updates action-value function parameters w
- Actor Updates policy parameters 0, in direction suggested by critic

Actor-critic algorithms follow an approximate policy gradient

v

Vod(0) = Er, [Vologmy(s,a) Qu(s,a)]
A0 = aVylogmy(s,a) Quwl(s,a)

Reducing Variance Using a Baseline

» We can subtract a baseline function B(s) from the policy gradient

» This can reduce variance, without changing expectation!

Er, [Vologm(s,a)B(s)] =0
» A good baseline is the state value function B(s) = V™ (s)
» S0 we can rewrite the policy gradient using the advantage function:
A" (s,a) = Q™ (s,a) — V™(s)
VJ(0) = Ex, [Vo log m(s, a) A™(s,)]

» Note that it is the exact same policy gradient:

[VHJ(Q) — {‘7'('9 [Vé’ |Og 7T9(57 a) QWO(S, a)]]

Estimating the Advantage Function

»For the true value function \/™¢(s) the TD error:
0™ = r+~yV™(s") — V™(s)
IS an unbiased estimate of the advantage function:
Er, [07]s, a] = Eg, [r +yV7™(s")|s,a] — VT(s)
= Q"(s,a) — V™(s)
= A"(s, a)
» S0 we can use the TD error to compute the policy gradient

Vod(0) =E, [Vglogmy(s,a) 6™

» Remember the policy gradient

VoJ(0) = E,, [Vologmg(s,a) A"(s, a)]

Estimating the Advantage Function

»For the true value function \/™¢(s) the TD error:
0™ = r+~yV™(s") — V™(s)
is an unbiased estimate of the advantage function

» S0 we can use the TD error to compute the policy gradient

Vod(0) =E, [Vglogmy(s,a) 6™
» In practice we can use an approximate TD error
Oy = r+ VVV(S/) — Vv(s)

» This approach only requires one set of critic parameters v

v

v

v

v

Dueling Networks

Split Q-network into two channels

Action-independent value function V(s,v)

Action-dependent advantage function A(s, a, w)

Q(s,a) = V(s,v) + A(s,a,w)

Advantage function is defined as:

A" (s,a) = Q" (s,a) — V" (s).

Wang et.al., ICML, 2016

Advantage Actor-Critic Algorithm

Input: a differentiable policy parameterization 7(a|s,@0),Va € A,s € §,0 € R"
Input: a differentiable state-value parameterization 9(s,w),Vs € §,w € R™
Parameters: step sizes a > 0, 8> 0

Initialize policy weights @ and state-value weights w
Repeat forever:
Initialize S (first state of episode)
I+1
While S is not terminal:
A~ m(-]S,0)
Take action A, observe S, R
d < R+ ~v9(S",w) — 9(S,w) (if S’ is terminal, then ©(S5’',w) = 0)
W w+ 36V 0(S,w)
0 0+ aliVelogm(AlS,)
I —~I
S« S

So Far: Summary of PG Algorithms

» The policy gradient has many equivalent forms

Vod(0) =E, [Velogme(s,a) G REINFORCE
=E,, [Vologm(s,a) Q" (s, a)] Q Actor-Critic
=E,, [Vglogmg(s,a) A¥(s,a)] Advantage Actor-Critic
= Er, [Volog ms(s,a) d] TD Actor-Critic

» Each leads a stochastic gradient ascent algorithm

» Critic uses policy evaluation (e.g. MC or TD learning) to estimate

Q™ (s,a), A™(s,a) or V™(s)

But will it converge if we use function approximation??

Under what conditions??

v

v

v

v

v

Bias in Actor-Critic Algorithms

Approximating the policy gradient introduces bias

Qu(s,a) =~ Q™(s, a)

A biased policy gradient may not find the right solution

Luckily, if we choose value function approximation carefully

Then we can avoid introducing any bias

I.e. we can still follow the exact policy gradient

Compatible Function Approximation

» If the following two conditions are satisfied:

1. Value function approximator is compatible with the policy

[VuwQuw(s,a) = Vg log my(s, a)]

2 Value function parameters w minimize the mean-squared error

(e =B [(Q7(5,9) — Quls,2))?]]

» Then the policy gradient is exact,

[VoJ(0) = Exr, [Volog (s, a) Qu(s, a)]]

» Remember:

[VoJ(0) = E,, [Vglogmg(s,a) Q™ (s, a)]]

Proof == Bn [(@7(:2) ~ Quls)]

» If wis chosen to minimize mean-squared error ¢,
then gradient of € with respect to w must be zero,

Vwe=0

Er, [(Q%(s,a) — Qu(s,a))VwQu(s,a)] =0

Er, [(Q%(s,a) — Qu(s,a))Vglogma(s,a)] =0
E., [Q%(s,a)Vglogmy(s,a)] =Er, [Qu(s,a)Vqlogms(s,a)]

» S0 Q,(s, a) can be substituted directly into the policy gradient,

Vod(0) = Er, [Vglogmy(s, a) Qu(s, a)]

» Remember: [Vod(0) = Er, [Vologmo(s,a) Q™(s, a)]]

Proof == Bn [(@7(:2) ~ Quls)]

» If wis chosen to minimize mean-squared error ¢,

note error € need not
then gradient of € with respect to w must be zero,

be zero, just needs to

Vye=0 be minimized!
Erg [(QG(S’ a) — Qu(s,a))VwQu(s, 3); =0 note we only need
Eﬂ-e [(QO(S, a) o QW(S’ a))v9 Iog 7r9(5, a)_ — VWQW(S7 a) — VO |0g 7T0(57 a)
E., [Q%(s,a)Vlog mo(s,a)] = B, [C to within a constant!

» S0 Q,(s, a) can be substituted directly into the policy gradient,

Vod(0) = Er, [Vglogmy(s, a) Qu(s, a)]

» Remember: [Vod(0) = Er, [Vologmo(s,a) Q™(s, a)]]

Compatible Function Approximation

» If the following two conditions are satisfied:

1. Value function approximator is compatible with the policy

[VuwQuw(s,a) = Vg log my(s, a)]<—— nO8 GE EE

achieve this??

2 Value function parameters w minimize the mean-squared error

(e =B [(Q7(5,9) — Quls,2))?]]

» Then the policy gradient is exact,

[VoJ(0) = Exr, [Volog (s, a) Qu(s, a)]]

» Remember:

[VoJ(0) = E,, [Vglogmg(s,a) Q™ (s, a)]]

Compatible Function Approximation

» If the following two conditions are satisfied:

1. Value function approximator is compatible with the policy

How can we
[VwQuw(s,a) = Ve log m(s, a)]<— achieve this??

One way: make Q, and 11y both be linear functions of same features of s,a
» let ®©(s,a) be a vector of features describing the pair (s,a)
» let Q(s,a) =w'®(s,a). letlog my(s,a) = 0'd(s,a)
v then V,Qu(s,a) = o(s,a) = Vymy(s,a)

Compatible Function Approximation

l . How can we
[VWQW(S’ a) = Vg log WG(S’ a) achieve this??

One way: make Q, and 114 both be linear functions of same features of s,a
» let ®@(s,a) be a vector of features describing the pair (s,a)
» let Q,(s,a) =w'®(s,a). letlog my(s,a) =0'd(s,a)
» then v,,.Q,p(h‘.({) = (_f)(s. (l.) = V(}TI'()(.S', (1)

Q,(s,a) =w,"P(s)

d(s) log 1T4(s,a) = 6,7 D(s)

Alternative Policy Gradient Directions

>

>

Generalized gradient ascent algorithms can follow any ascent direction

A good ascent direction can significantly speed convergence

Also, a policy can often be reparametrized without changing action
probabilities

For example, increasing score of all actions in a softmax policy

The vanilla gradient is sensitive to these reparametrizations

but the natural gradient /s not!

Natural Policy Gradient

» The natural policy gradient is parameterization independent (i.e.,
not influenced by set of parameters you use to define

» it finds ascent direction that is closest to vanilla gradient

Vgatﬂ'g(s, a) — G9_1V97T9(S, a)

» where Gg is the Fisher information matrix

Gy = E, [V@ log mg(s, a) Vg log mg(s, a)T]

Natural Policy Gradient

» The natural policy gradient is parameterization independent (i.e.,
not influenced by set of parameters you use to define

V5etme(s,a) = G, 'Vymy(s, a)

» Where G is the Fisher information matrix

Gy = E, [Vg log (s, a)Vg log (s, a)T]

» what is the <i, j>th element of G4 ?

» what is Gg if we have a parameterization that yields the natural
gradient?

"y Under linear model:
Natural Actor-Critic [A70(s,a) = B(s) w J
» Using compatible function approximation,

VWAW(S7 a) = Vy |Og 7T9(57 a)

» The natural policy gradient simplifies,

VoJ(0) = Er, [Vglogmg(s,a)A™ (s, a)]

=Er, [V@ log mg(s, a)Vg log (s, a) Tw]

— G@W
Va2t J(0)= w

» i.e. update actor parameters in direction of critic parameters!

Vietme(s,a) = G, *Vera(s, a)

from: Peters and Schaal

1186 J. Peters, S. Schaal | Neurocomputing 71 (2008) 1180-1190

a b

Cart-pole problem A sample learning run

50 100 150

Time in minutes

0.09 = 1 | 1 | |
0 20 40 60 80 100 120 140 160

Time in minutes

Fig. 3. This figure shows the performance of Natural Actor-Critic in the Cart-Pole Balancing framework. In (a), you can see the general setup of the pole
mounted on the cart. In (b), a sample learning run of the both Natural Actor-Critic and the true policy gradient is given. The dashed line denotes the
Natural Actor-Critic performance while the solid line shows the policy gradients performance. In (c), the expected return of the policy is shown. This is an
average over 100 randomly picked policies as described in Section 4.1.

from: Kakade

As — Bl Qo2 —1 D
B umm o — .]
4 N @y et e a4 ssessa ‘5‘
'."\:. 813‘08231] a .g‘:l |
30 REWRTTT g N2 R ol
e§- R=0 % 05 Vo7 '8 2 _|
fime x o |
a: ’ g’z," v Sidadiiiiid ‘..'.----'- |
25 A g ' 5:
J w\‘
a [[Lmeermmmame
...... pL 0
20; e e] o ot et — : —
-2 =1 1 2 3 4 0 05 1 15 2 25 3 0 5 10 15
o, o) time o

Figure 1: A) The cost vs. log,y(time) for an LQG (with 20 time step trajectories).
The policy used was m(u;z,6) o exp(#;512* + 025.2) where the rescaling constants,
s1 and ss, are shown in the legend. Under equivalent starting distributions (6,8, =
#2585 = —.8), the right-most three curves are generhted using the standard gradient
method and the rest use the natural gradient. B) See text. C top) The average
reward vs. time (on a 107 scale) of a policy under standard gradient descent using
the sigmoidal policy parameterization (7 (1;s,60;) o< exp(8;)/(1 + exp(8;)), with the
initial conditions 7 (i,1) = .8 and 7 (j,1) = .1. C bottom) The average reward vs.
time (unscaled) under standard gradient descent (solid line) and natural gradient
descent (dashed line) for an early window of the above plot. D) Phase space plot
for the standard gradient case (the solid line) and the natural gradient case (dashed
line).

Summary of Policy Gradient Algorithms

» The policy gradient has many equivalent forms

REINFORCE
Q Actor-Critic
Advantage Actor-Critic

TD Actor-Critic
Natural Actor-Critic

» Each leads a stochastic gradient ascent algorithm

» Critic uses policy evaluation (e.g. MC or TD learning) to estimate

Q™ (s,a), A™(s,a) or V™(s)

