10703 Deep Reinforcement Learning
Policy Gradient Methods

Tom Mitchell
October 1, 2018

Reading: Barto & Sutton, Chapter 13

Used Materials

e Much of the material and slides for this lecture were taken from
Chapter 13 of Barto & Sutton textbook.

e Some slides are borrowed from Ruslan Salakhutdinov, who in turn
borrowed from Rich Sutton’s RL class and David Silver’'s Deep RL
tutorial

Policy-Based Reinforcement Learning

» So far we approximated the value or action-value function using
parameters 0 (e.g. neural networks)

Vio(s) = V™ (s)
Qy(s,a) ~ Q" (s, a)

» A policy was generated directly from the value function e.g. using ¢-
greedy
» In this lecture we will directly parameterize the policy

mo(s,a) =Pla | s, 0]

» We will focus again on model-free reinforcement learning

Policy-Based Reinforcement Learning

» So far we approximated the value or action-value function using
parameters 0 (e.g. neural networks)

Vio(s) = V™ (s)
Qp(s.a) ~ Q™ (s, a)

» Apolicil Sometimes | will also use the notation: g. using ¢-

greedy] 7T(At|St, 9)

» In this N\ / J

mo(s,a) =Pla | s, 0]

» We will focus again on model-free reinforcement learning

Typical Parameterized Differentiable Policy

» Softmax:

. eh(s,a,0)
m(als, 0) =

3, eh(s.5.8)

where /(s,a,0) is any function of s, a with params 6
e.g., linear function of features x(s,a) you make up
h(s,a,0)=0"x(s, a)
x(s,a) € R?

e.g., h(s,a0) is output of trained neural net

Value-Based and Policy-Based RL

» Value Based

- Learn a Value Function

- Implicit policy (e.g. e-greedy)

» Policy Based Value Function Policy

- Learn a Policy directly

Actor
Critic

Value-Based Policy-Based |

» Actor-Critic

- Learn a Value Function, and

- Learn a Policy

Advantages of Policy-Based RL

» Advantages

- Better convergence properties
- Effective in high-dimensional, even continuous action spaces

- Can learn stochastic policies

» Disadvantages

- Typically converge to a local rather than global optimum

Example: Why use non-deterministic policy?

Consider the small corridor gridworld shown inset in the graph below. The reward
1s —1 per step. as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the first
and third states (left causes no movement in the first state), but in the second
state they are reversed, so that right moves to thee left and left moves to the right.
The problem is difficult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1,0] T and x(s, left) = [0,1]T,
for all s. An action-value method with e-greedy action selection is forced to choose
between just two policies: choosing right with high probability 1 — /2 on all steps
or choosing left with the same high probability on all time steps. If ¢ = 0.1, then
these two policies achieve a value (at the start state) of less than —44 and —82,
respectively, as shown in the graph. A method can do significantly better if it can
learn a specific probability with which to select right. The best probability is about
0.59, which achieves a value of about —11.6.

1.6 —

20+ optir'nal
stochastic

policy

-40 -
g-greedy right
J(0) = vre (S)
-60
S.|=2——| G
B0 e-greedy left
-1 00 -I 1 1 L 1 J

0 01 02 03 04 05 06 07 08 09 1
probability of right action

What Policy Learning Objective?

» Goal: given policy Tr4(s,a) with parameters 8, wish to find best 6

» define “best 8” as argmaxy J(0) for some J(6)

» In episodic environments we can optimize the value of start state s,

J1(0) = V™(sq)

()
Remember: Episode of experience under

olicy T:
POTIEY 517A17R27“'7SkN7T
_ J

What Policy Learning Objective?

Goal: given policy 1T4(s,a) with parameters 8, wish to find best 6

» define “best 8” as argmaxy J(0) for some J(6)

In episodic environments we can optimize the value of start state s,
h(0) = V™(s1)
In continuing environments we can optimize the average value

() = 3 (VO

Or the average |mmed|ate reward per time-step

Javr(0) = d™(s) Y mo(s,a)R2

S

where d™9(s)is stationary distribution of Markov chain for 17,

Policy Optimization

Policy based reinforcement learning is an optimization problem
- Find 8 that maximizes J(8)

Some approaches do not use gradient
- Hill climbing

- Genetic algorithms

Greater efficiency often possible using gradient
- Gradient descent
- Conjugate gradient

- Quasi-Newton

We focus on gradient ascent, many extensions possible

And on methods that exploit sequential structure

Gradient of Policy Objective

Let J(B) be any policy objective function

Policy gradient algorithms search for a local
maximum in J(0) by ascending the gradient
of the policy, w.r.t. parameters 6

AO = aVaJ(6)

N

a is a step-size is the policy gradient

parameter (learning 0J(6)
rate) 001

VeJ(6) =

Computing Gradients By Finite Differences

» To evaluate policy gradient of 1y(s, a)

» For each dimension k in [1, n]
- Estimate kth partial derivative of objective function w.r.t. 6

- By perturbing 8 by small amount € in kth dimension

0J(0) J(0+ eux) — J(0)
00 ~ €

where u, is a unit vector with 1 in kth component, O elsewhere

» Uses n evaluations to compute policy gradient in n dimensions
» Simple, inefficient — but general purpose!

» Works for arbitrary policies, even if policy is not differentiable

How do we find an expression for VJ(0) ?

Consider episodic case: .J(0) = v, (so)

Problem in calculating V.J(8)
doesn’t a change to O alter both:

action chosen by 11, in each state s

distribution of states we’ll encounter

é)
Remember: Episode of experience under

olicy T1r:
POICY S1,A1, Ry, ..., Sk~
_ J

How do we find an expression for VJ(0) ?

Consider episodic case: .J(0) = v, (so)

Problem in calculating V.J(8)
doesn’t a change to O alter both:

action chosen by 11, in each state s

distribution of states we’ll encounter

Good news: policy gradient theorem:

O(Z,LL z:q7T s,a)Vm(als,8)

where ;(s)1s prooaomty QISINIDULION OVEr SIAIes

Proof of the Policy Gradient Theorem (episodic case)

With just elementary calculus and re-arranging of terms, we can prove the policy

gradient theorem from

first principles. To keep the notation simple, we leave it

implicit in all cases that 7 1s a function of 8, and all gradients are also implicitly
with respect to 8. First note that the gradient of the state-value function can be
written in terms of the action-value function as

Vug(s) = Z m(a|s)qr(s,a)|, forallseS (Exercise 3.18)

Vr(a|ls)gr(s,a) + m(a|ls)Var (s, a)] (product rule of calculus)

Vr(als)qr(s,a) + m(als)V Zp(s', r|s,a)(r+ v,r(s'))]

/
s'\r

(Exercise 3.19 and Equation 3.2)

=) :Vﬂ(als)qw(s, a) +(als) Yy p(s'|s, a)vv,,(s')] (Eq. 3.4)
- Z :V”(a|3)qﬂ(5, a) + m(als) ZP(SI |5, a) (unrolling)

s/

S [Vr(alsan(s', @) + 7(@ls) S p(s" |5, 0! Ton ()]

al

3”

_ZZPr s—x, k W)Zvﬂ' al|z)qr(x,a),

re8 k=0

after repeated unrolling, where Pr(s — x, k,) is the probability of transitioning
from state s to state x in k steps under policy 7. It i1s then immediate that

V.J(0) = Vur(s0)
-3 (Z Pr(so—+s, k,))| S Vr(als)ar(s, a)
_ Z" S)Z Vr(als)gx (s, a) (box page 199)
= S S 5y 2 Vrlalshan(s.o

- Z n(s Z u(s) Y Vr(als)ax(s, a) (Eq. 9.3)
x Z (s) Z Vr(a|s)qr(s,a) (Q.E.D.)

SGD Approach to Optimizing J(0) : Approach 1

0) x Z [1(s) Z qr(s,a)Vm(als,O)

=K, qu St,a)Vm(a|St, 0)

We could stop here and instantiate our stochastic gradient-ascent

Orr1 =6+ Y G(Si.a,w)Vr(alS,6),

SGD Approach to Optimizing J(6) : Approach 2

J(0) Z [1(s) Z qr(s,a)Vm(als,8)

ZQ'IT(St VT((l|St) .

SGD Approach to Optimizing J(6) : Approach 2

J(0) Z,u,(s) qu(s,a)VW(a|s,9)

Z%(St)V (al|St,)]

VJO) =E; Z m(a|St, 0)qr(St, a)

| a

V7r(a|St,0)]
m(alSt, 0)
Vr(Ag|St, 9)]

m(A¢|St, 0)
Vr(Ag|St, 9)]
m(A¢|St, 0)

= Erx|qr(St, At)

(replacing a by the sample A; ~)

~E. |G, (because E [G¢|St, A¢] = ¢(St, At))

SGD Approach to Optimizing J(6) : Approach 2

) X Zu ZQ‘R’(S a)Vr(als,8)

qu(st Vﬂ' (l|St) .

- Vr(alS,0)
VJ(0) = Ex| Y walSi,O)ax(S4)~ 1]

: VW(At|St,9))

= E;|qr (S, A epl by the : le Ay ~
_q (S, At) T (A4]5r.0) (replacing a by the sample A; ~)
[V’ﬂ'(AtISt,O)]

=E. |G because E |G¢|S¢, A¢]l = q.(S;, A
_ t 7(A4Sq, 0) ((G¢|St, At] = qx(St, At))

V7r(At|St, gt)
71’(141:|St,9t)

Oir1 = 0 + aGy

REINFORCE algorithm

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for 7,

Input: a differentiable policy parameterization 7(al|s, @)
Algorithm parameter: step size a > 0

Initialize policy parameter 6 € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode So, Ao, R1,...,S7-1,Ar_1, R, following 7 (-|-, 0)
Loop for each step of the episode t =0,1,...,7 — 1:
G« Z£=t+1 VIR (Gt)
0 «— 0 + ay*GVInnw(AsS:, 0)

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for 7,

Input: a differentiable policy parameterization 7(al|s, @)
Algorithm parameter: step size a > 0

Initialize policy parameter 6 € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode So, Ag, R1,...,57-1,Ar_1, R, following 7(-|-, 6)
Loop for each step of the episode t =0,1,...,7 — 1:
T —t—
G X k=t41 v* 1Ry
0 + 0 + ay'GV Innw(A¢|St, 0)

(Gt)

VW(Atlst, Ot)

0,,.1 =0 G
t+1 t + alGy 7(Aq| S, 67)

VW(At|St,9)
7T(At|St, 9)

NOte =V In 7T(At|St,9)

because dhnz 1
de x

Typical Parameterized Differentiable Policy

» Softmax:

. eh(s,a,0)
m(als, 0) =

3, eh(s.5.8)

where /(s,a,0) is any function of s, a with params 6
e.g., linear function of features x(s,a) you make up
h(s,a,0)=0"x(s, a)
x(s,a) € R?

e.g., h(s,a0) is output of trained neural net

REINFORCE algorithm on Short Corridor World

[t [e M AT W Wm; haliad
20/ WW M#W @WW W

g o il T -
Total reward

on episode

averaged over 100 runs 60

80+ ‘

_90 -

| 1 | 1 | J
1 200 400 600 800 1000
Episode

Good news:
 REINFORCE converges to local optimum under usual SGD assumptions
- because E [G]=Q(S A)

But variance is high
+ recall high variance of Monte Carlo sampling

Good news:
* REINFORCE converges to local optimum under usual SGD assumptions
. because Eﬂ[Gt] = Q(St,At)

But variance is high
+ recall high variance of Monte Carlo sampling

Adding a baseline to REINFORCE Algorithm

replace J(0) o Yu S)qu (s,a)Vm(als,)
by J(0) x Z,LL Z(s,a) — b(s))Vﬁ(a|s,9)

for some fixed function b(s) that captures prior for s

Note the equation is still valid because

> b(s)Vr(als,0) = b(s)V > m(a|s,0) = b(s)V1 = 0

VW(Atlst, Bt)
m(A¢|St, 6¢)

Result: Orr1 =60, + a(Gt — b(&:))

Adding a baseline to REINFORCE Algorithm

VW(At|St, Bt)

epIacing 161 =6, +a G P o
t|~ts VL

VTI'(Atlst, Ot)
m(A¢|St, ;)

by Or 11 = 0; + a(Gt - b(St)>

for a good b(S,) reduces variance in training target

one typical b(S) is a learned value function

b(S,) = ?}(St) ’LU)

REINFORCE with Baseline (episodic), for estimating mg ~ 7,

Input: a differentiable policy parameterization 7(al|s, @)
Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a® > 0, a% > 0

Initialize policy parameter @ € RY and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode So, Ao, R1,...,57-1,Ar_1, R, following 7 (-|-, 0)
Loop for each step of the episode t =0,1,...,7T — 1:
G Y ko1 7 Ry (Gt)
0+ G — 0(S¢,w)
w — W+ aV oVo(S,w)
0 — 6 + P~ 5V Inm(As|S:,)

2.2

10
20
REINFORCE
_ o—13
GO 40 ‘P' a=2
Total reward
on episode
averaged over 100 runs
-80 -
-90 -
1 | ! | 1 1
1 200 400 600 800 1000

Episode
Figure 13.2: Adding a baseline to REINFORCE can make it learn much faster, :

Good news:
* REINFORCE converges to local optimum under usual SGD assumptions
. because Eﬂ[Gt] = Q(St,At)

But variance is high
+ recall high variance of Monte Carlo sampling

Actor-Critic Model

* learn both Q and T
» use Q to generate target values, instead of G

One step actor-critic model:

V’/‘r(At|St, Ht)
’/T(At|St, Ht)

Oiy1 =0+ (Gt:t+1 — "lAf’(St,W))
V'/T(Atlst, Gt)

= 91; + « (Rt+1 + ’)"'ir(S't+1,w) — lA'(St.W))

. VTI'(Atlst, Ht)
t ¢ W(At|5t,9t)

’/T(At|St, Ht)

One-step Actor—Critic (episodic), for estimating mg ~ T,

Input: a differentiable policy parameterization 7(a|s,)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes o > 0, a% > 0
Initialize policy parameter 8 € RY and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I<+1
Loop while S is not terminal (for each time step):
A~ m(-|S,0)
Take action A, observe S/, R
0 R+ ~yo(S',w) —0(S,w) (if S’ is terminal, then o(S’,w) = 0)

W w+aVoVo(Sw)
00— 0+a%I15Vinm(A|S,6)
I < ~I

S+ 5’

