Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Natural Policy Gradients, TRPO, PPO

CMU 10703

Katerina Fragkiadaki

Part of the slides adapted from John Shulman and Joshua Achiam

Stochastic policies

continuous actions

usually multivariate
Gaussian

a~ N(po(s),o5(s))

discrete actions
almost always

categorical

Po(s)
a ~ Cat(py(s))

Policy Gradients

Monte Carlo Policy Gradients (REINFORCE), gradient direction: & = I; {Ve log g (ar | st)As

Actor-Critic Policy Gradient: & = E, [V,log my(a,| s)Ay(s)]

1. Collect trajectories for policy Tty
2. Estimate advantages A This lecture is all about the stepwise
3. Compute policy gradient 2

4. Update policy parameters 6, =60+¢-g
5.GOTO 1

He(S)

oy(S)

ﬂenew(s)
7N (s)

What is the underlying objective function?

1 NP
BOCTISRRERRS <~ > > Votos e’ 157G, 4. 7~y

i=1 r=1
What is our objective? Result from differentiating the objective function:

] & w . o
TH00) = — Y Y logmya®|sDAGS, a7~ m,
i=1 r=1
Is this our objective? We cannot both maximize over a variable and sample from it.
Well, we cannot optimize it too far, our advantage estimates are from samples of
\pi_theta_{old}. However, this constraint of “cannot optimize too far from \theta_{old}”
does not appear anywhere in the objective.

Compare to supervised learning and maximum likelihood estimation (MLE). Imagine we
have access to expert actions, then the loss function we want to optimize is:

1 N T . .
JSHO) = ~ Y Y logm@?|s®), 7,~z* +regularization

i=1 =1
which maximizes the probability of expert actions in the training set.

Is this our SL objective?

Well, as a matter of fact, we care about test error, but this is a long story, the short
answer is yes, this is good enough for us to optimize if we regularize.

Policy Gradients

Monte Carlo Policy Gradients (REINFORCE), gradient direction: & = I; {Ve log g (ar | 5t)As

Actor-Critic Policy Gradient: & = E, [Vylog my(a, | 5,)A(s,)]

1. Collect trajectories for policy 7,
2. Estimate advantages A This lecture is all about the stepwise
3. Compute policy gradient g

4. Update policy parameters 6, =60+¢-g
5.GOTO 1

It is also about writing down an objective that we can
optimize with PG, and the procedure 1,2,3,4,5 will be the
result of this objective maximization

He(S)

oy(S)

ﬂenew(s)
O-enew(s)

Policy Gradients

Monte Carlo Policy Gradients (REINFORCE), gradient direction: & = I; {Ve log g (ar | st)As

Actor-Critic Policy Gradient: & = E, [V,log my(a,| s)Ay(s)]

1. Collect trajectories for policy Tty

2. Estimate advantages A

3. Compute policy gradient g

4. Update policy parameters 6, =60+¢- 3
5.GOTO 1

Two problems with the vanilla formulation:

1. Hard to choose stepwise €
2. Sample inefficient: we cannot use data

' Ho(S)
|
collected with policies of previous

iterations ()
- — Onew
_ = Gaew = .,

Hard to choose stepsizes

Monte Carlo Policy Gradients (REINFORCE), gradient direction: & = I; {Ve log mg(at | st)f\t}

Actor-Critic Policy Gradient: & = E, [V,log my(a,| s)Ay(s)]

- Step too big

1. Collect trajectories for policy Bad policy->data collected under bad
2. Estimate advantages A policy-> we cannot recover

3. Compute policy gradient g (in Supervised Learning, data does not
4. Update policy parameters depend on neural network weights)
5.GOTO 1 - Step too small

Not efficient use of experience
(in Supervised Learning, data can be
trivially re-used)

i
¥
0 fo_ (S)

between 7, (s) and 7z, (s) _ = Upew =P 0o (S)

9 He(S)

old ™ o)

Hard to choose stepsizes

Monte Carlo Policy Gradients (REINFORCE), gradient direction: & = I; {Ve log g (ar | st)f\t}

Actor-Critic Policy Gradient: & = E, [V,log my(a,| s)Ay(s)]

1. Collect trajectories for policy Tty

2. Estimate advantages A

3. Compute policy gradient 2

4. Update policy parameters (,, =0 +¢-2
5.GOTO 1

Consider a family of policies with parametrization:

() a=1
”9(3)_{ 1—0(0) a=2

Lo theta = 4 theta = 2 theta =0
0.8 -
0.6 - .
0.4 - .
0.2 - .
0.0 - ' = =
al a2 al a2 al a2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Notation

We will use the following to denote values of parameters and corresponding policies before
and after an update:

Hold — Hnew

old — Ty ew

0— 0

T — 7

Gradient Descent in Parameter Space

The stepwise in gradient descent results from solving the following optimization problem, e.g.,
using line search:

d* =arg max J(0 + d)
lldll<e

Euclidean distance in parameter space

It is hard to predict the result on the parameterized distribution..

SGD: ¢

n

ew — eola,’_l_d>I<

Gradient Descent in Distribution Space

The stepwise in gradient descent results from solving the following optimization problem, e.g.,
using line search:

d* = arg max J(6 + d)
lld||<e
SGD eewz old_l_d>x<

n

It is hard to predict the result on the parameterized distribution.. hard to pick the threshold
epsilon

Natural gradient descent: the stepwise in parameter space is determined by
considering the KL divergence in the distributions before and after the update:

d* = arg max JO@+d)
d, s.t. KL(mp||my, 5)<€

Easier to pick the distance threshold!!! i

Solving the KL Constrained Problem

penalized objective:

d* = argmax J(0 + d) — A(Dy; |myllmg,a| — €
d

First order Taylor expansion for the loss and second order for the KL.:

1
~ argmax J(0yuq) + VoJ0) |y, - d - 54d" VD [neoldun@] d) + Ae

| 0=0,

Taylor expansion of KL

1
DKL(p 0,14 |p 9) ~ DKL(p Ootd |p Qold) + dT V9 DKL(p Ooia |p 6) |9=901d + EdT VéDKL(p@Old |p€) |‘9=901¢

VQDKL(peozd |p9) |9=901d - = VQ[Eprgold lOg Pe(x) |9=901d

= —[F » Vylog Py(x) | ,_

X~Ppg 0,1a

1
=—E Vo Py(X) |

—I=,
P Oold P 901d(x)

eold

1
— d xP Qozd(x) Peold(x) VQP e(x) |0=901d
= | Vol |‘9=‘901d
— VHJ; PQ(X) |19=‘901d KT _r 1 Peold(x)
—0 (pﬁoldlp 9) X~y 08 PQ(X)

Taylor expansion of KL

1
Dx1(Pg | P9) = Dx1(pg Py)+ d' VoKL(py . | Pp) |9=901 T EdT VgDKL(Peold | Py) |9=gol dd

VgDKL(pﬁold |pe) |9=901d -~ [E-preold Vgl()g Pe(x) |9=601d

Vo Py(x)
= —Evp, ldvé(P) lo=6
0 Q(X) old

_ [VPSP = VoPfx) VoPy0))
B A™PO,1q P(x)? 6=0,,,

E VoPolo-s,, E._ V,logP,x)V,log P(x)"
— x~py Pﬁold(x) T x~pg . ¥ 0 0g Py(x) Vglog Py(x)

= [EXNPQOM Volog Py(x) Vylog Py(x)'

| 0=‘90lc

| 9=901d

Peold(X)
DKL(pgol ’ |p9) — [EXNPeold log PQ(X)

Fisher Information Matrix

Exactly equivalent to the Hessian of KL divergence!

F(0) = E, | Vglog py(x) Vglog pyx)T]

F(0,) = VgDx1(Pe,, 1 Po) lg—g

|
D1.(Pe,, | Po) = Dx1(Po,,,1Pg,,) +d" VoDx(Pe,,|Po) lg—g,, + 5" ViDki(P,,1P) |-,
1 T
= d"F(0,,)d

1
— 5(9 — eold)TF(eold)(e _ gold)

Since KL divergence is roughly analogous to a distance measure between
distributions, Fisher information serves as a local distance metric between
distributions: how much you change the distribution if you move the parameters a
little bit in a given direction.

Solving the KL Constrained Problem

penalized objective:

d* =argmax J(0 + d) — A(Dg [72'9”71'9_|_d] —€)
d

First order Taylor expansion for the loss and second order for the KL.:

1
~ argmax J(0y0) + VoJ(0) |y, - d = 5 4(d" ViDyr [@Mnn@] d) + Ae

| gzgold

Substitute for the information matrix:

1
= argmax Vo J©) |y, d = Ad F(0,)d)

1
= arg mdin — V,J(0) |9=90M - d + E/l(dTF(Qold)d)

Natural Gradient Descent

Setting the gradient to zero:

0 1
O — % <— V@J(e) |9:901d * d + Eﬂ(dTF(eold)d))

1
= — V@J(e) |9:(901d + EA(F(eold))d

2__
d = IF l(eold) VHJ(G) |9=901d

. 1
The natural gradient: Dy (g, |) = 5(9 —0.,)'F@6,)0-0,)

VJO) =F1@,,,)V,J6)

1 T
E(chN) Flagy) = ¢

enew =Upy +a- F_l(eold)g 2¢€
\/(gﬁFgN)

Natural Gradient Descent

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters 6y

for k=0,1,2,... do
Collect set of trajectories Dy on policy 7, = w(6k)
Estimate advantages /Z\f" using any advantage estimation algorithm
Form sample estimates for

@ policy gradient gx (using advantage estimates)
@ and KL-divergence Hessian / Fisher Information Matrix Hi

Compute Natural Policy Gradient update:

end for

Natural Gradient Descent

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters 6y

for k=0,1,2,... do
Collect set of trajectories Dy on policy 7, = w(6k)
Estimate advantages /Z\f" using any advantage estimation algorithm
Form sample estimates for

e policy gradient gx (using advantage estimates)
e and KL-divergence Hessian / Fisher Information Matrix Hi

Compute Natural Policy Gradient update:

end for

Policy Gradients

Monte Carlo Policy Gradients (REINFORCE), gradient direction: & = I; {Ve log g (ar | st)As

Actor-Critic Policy Gradient: & = E, [V,log my(a,| s)Ay(s)]

1. Collect trajectories for policy Ty .
2. Estimate advantages A 7

3. Compute policy gradient 2

4. Update policy parameters 6,,, =6,,,+¢€-8
5.GOTO 1

ﬂeold(s)

Geold(s)

ﬂenew(s)
e S)

Policy Gradients

Monte Carlo Policy Gradients (REINFORCE), gradient direction: & = I; {Ve log g (ar | st)As

Actor-Critic Policy Gradient: & = E, [V,log my(a,| s)Ay(s)]

 On policy learning can be extremely

1. Col_lect trajectories for policy Tt inefficient

2. Estimate advantages A - The policy changes only a little bit with
3. Compute policy gradient g each gradient step

4. Update policy parameters 0,,,, =0,;+¢-& . | wantto be able to use earlier data..how
5.GOTO 1 to do that?

9 ﬂeold(S)
old ™ 5,

. ' |
. Mo, .. (5)
- = Gaew = .,

Off policy learning with Importance Sampling

JO) = B ry) [RE)]
=) 7(OR(1)

= Y 7 (D—"R()
o, (T)

v, J(0) = [ETN,TQ V y7y(7) R(7)

old ﬂeold(f)

Vo O lgg,,, = Eenz, Vologm(t)ly_y R(®) <.Gradient evaluated at theta_old is unchanged

Off policy learning with Importance Sampling

JO) = E, e [R(D)

— Z 7y(T)R(7) 1 (T) i 1 7o, (als;) -
[I o/
= Zﬂ (7)) R(7) > JO) = _TNﬂeode II my (a;l s &
o1 T, (T) =1 t'=1 eold L=t
T old
o(7)
22 (7)
Mg Now we can use data from the old
77(7) policy, but the variance has
=Eoeny ()R(T) increased by a lot! Those
0,,\" multiplications can explode or
vanish!
675(7)
Vo J(O)=E___ p— (7)
0

V@J(e) |9:9@ld —_ [ETNﬂgold V@log 71'9(7:) |9:901d R(T)

Trust region Policy Optimization

maxi@mize I@Zt[7T9(3t | St) /A\t]

subject to . [KL[mg, (- | 5¢), ma(- | s¢)]] < .

» Also worth considering using a penalty instead of a constraint

maximize I@t[M(at ‘ St)
0 7T901d(at ‘ St)

A“t] BB KL (- | s2). mol- | 5]
Again the KL penalized problem!

J. Schulman, S. Levine, P. Moritz, M. |. Jordan, and P. Abbeel. “Trust Region Policy Optimization”.

Trust region Policy Optimization

» maximizeg Lﬂ-eold (m9) — 3 - ﬁﬂ-eold (79)
» Make linear approximation to L, . and quadratic approximation to KL term:
maximize g- (0 — O1q) — g(@ — Ooa) " F(0 — o1a)

0
0 0° o
where g = %Lmold (7T9)|9:901d’ F= %KLW%M (ﬂ-e)‘9=901d

Exactly what we saw with natural policy gradient!
One important detail!

Trust region Policy Optimization

Due to the quadratic approximation, the KL constraint may be violated! What if we just do a
line search to find the best stepsize, making sure:

- | am improving my objective J(\theta)

- The KL constraint is not violated!

maximize IAEt[mo(2e |) /A\t]
0 7T901d(at ‘ St)

subject to F.[KL[my_.(- | 5), mo(- | s¢)]] < 6.

Algorithm 2 Line Search for TRPO

Compute proposed policy step Ay = \/

for j=0,1,2,....L do
Compute proposed update 0 = 0, + o/ A
if [,Qk(g) >0 and DKL(QHQ/() < ¢ then
accept the update and set 0x11 = Ok + &/ Ay
break
end if
end for

A—].’\
H "g
AT i —1 A k
ngHk 8k k

Trust region Policy Optimization

TRPO= NPG +Linesearch

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters 6y

for k=0,1,2,... do
Collect set of trajectories Dx on policy mx = w(6x)
Estimate advantages /A\?k using any advantage estimation algorithm
Form sample estimates for

@ policy gradient g« (using advantage estimates)
o and KL-divergence Hessian-vector product function f(v) = Hyv

Use CG with n. iterations to obtain xx ~ F/,;lgrk

Estimate proposed step Ay ~ , /%xk
k TTk*k

Perform backtracking line search with exponential decay to obtain final update
Okt1 = Ok + of Ay

end for

Trust region Policy Optimization

TRPO= NPG +Linesearch+

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters 6y

for k=0,1,2,... do
Collect set of trajectories Dx on policy mx = w(6x)
Estimate advantages /A\?k using any advantage estimation algorithm
Form sample estimates for

@ policy gradient g« (using advantage estimates)
o and KL-divergence Hessian-vector product function f(v) = Hyv

Use CG with n. iterations to obtain xx ~ F/,;lgrk

Estimate proposed step Ay ~ , /%xk
k TTk*k

Perform backtracking line search with exponential decay to obtain final update
Okt1 = Ok + of Ay

end for

Relating objectives of two policies

Policy objective:

J(jz.@) = [ETNJZ'Q Z 7tr t
=0

Policy objective can be written in terms of old one:

Jry) = Jmg) = E,p Y 7' A™(s,,)
=0

Equivalently for succinctness:

Jx) = Jm) =E, .) r'A(s.)
=0

Relating objectives of two policies

2{:’7%4W(S},at)
_t=0 i

= B |20 (R(se, a0, 5001) + 7V (s042) = V7 (s2)

| t=0

=J(@)+ E 1D TV (sen) =) AV (st)
t=0 t=0 i

T~YTT

= J(r)+ B[S 4V(s) - DAt v(s)
t=1 t=0 _

T~YTT

—J) - E V()]

T~YTT

= J(r') — J(x)

The initial state distribution is the same for both!

Approximately Optimal Approximate Reinforcement Learning, Kakade and Langford 2002

Relating objectives of two policies

Discounted state visitation distribution:
d*(s)=(1=y)), y'P(s, = 5| n)

=0

Ja) = J(m) = E,p Y y'A™(s. a)
=0

=E A”"(s,a)

s~d® a~rw

7'(als)

— [ESNd”/,aNJZ' [

A”(s, a)]

n(als)
But how are we supposed to sample states from the policy we are trying to optimize for...
Let’s use the previous policy to sample them.

w'(als)

J(]Z") —_— J(]T) ~ HESNdﬂ,aNﬂ.]Z.(a | S)

A”(s,a)

=Z (7'

It turns out we can bound this approximation error:

(") = (J(m) + La(7"))] < C\/ E D (r'||m)[s]]

s~d™

Constrained Policy Optimization, Achiam et al. 2017

Relating objectives of two policies

This is something we can optimize using trajectories from the old policy!

Compare to Importance Sampling:

J0)=E, ., ZH ”e(az|st) i

Now we do not have the product! So, the gradient will have much smaller variance! (Yes, but
we have approximated, that’s why!) What is the gradient?

i o0 V@ﬂg(at | St) |9_9
v,Z%0 =FE__ ! =~ A5, a
0=~ 0, |t9=9k T~y g Y ﬂé’k(at | S;) (t t)
= [ETNﬂ'gk Z yt Velog ﬂﬁ(at | St) |9=9kAﬂ€k(St’ at)

i
S

Monotonic Improvement heorem

J(r) = (J(@) + Z (1)) | < c\/ E, g [KL(z'| 7)[s]|

= J(n) — J(n) > L (%) — c\/ E, g [KL(z'| 7)[s]|

Given policy z, we want to optimize over policy z’ to maximize

- If we maximize the RHS we are guaranteed to maximize the LHS.
- We know how to maximize the RHS. | can estimate both quantities of \pi’ with

sampled from \pi

- But will i have a better policy \pi’? (knowing that the distance of the objectives is
maximized is not enough, there needs to be positive or equal to zero)

Monotonic Improvement heorem

Proof of improvement guarantee: Suppose w11 and 7, are related by

Tkt = argmax Lo, (7Y = C./ E_[Drc(n'||mk)[s]].

s~d™k

@ m is a feasible point, and the objective at 7, is equal to O.
o L (mk) E [ATk(s,a)] =0

s,a~d7k

o Dyi(mi||mi)[s] =0
@ — optimal value > 0
@ — by the performance bound, J(mx+1) — J(mk) > 0

Approximate Monotonic Improvement

- Theory is very conservative (high value of C) and we will use KL distance of pi’ and
pi as a constraint (trust region) as opposed to a penalty:

Ti+1 = argmax Lr, (")

7T

s.t. E [DKL(T",HT"k)[SH S(S

s~d™k

Trust region Policy Optimization

TRPO= NPG +Linesearch+

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters 6y

for k=0,1,2,... do
Collect set of trajectories Dx on policy mx = w(6x)
Estimate advantages /A\?k using any advantage estimation algorithm
Form sample estimates for

@ policy gradient g« (using advantage estimates)
o and KL-divergence Hessian-vector product function f(v) = Hyv

Use CG with n. iterations to obtain xx ~ F/,;lgrk

Estimate proposed step Ay ~ , /%xk
k TTk*k

Perform backtracking line search with exponential decay to obtain final update
Okt1 = Ok + of Ay

end for

Proximal Policy Optimization

Can | achieve similar performance without second order information (no Fisher matrix!)

@ Adaptive KL Penalty
e Policy update solves unconstrained optimization problem

Ok41 = arg max Loy, (0) — Bk Drr(0]]0k)

e Penalty coefficient 5x changes between iterations to approximately enforce
KL-divergence constraint

@ Clipped Objective

o New objective function: let ri(0) = mg(at|st)/mg, (at|st). Then

LgH"(0) = E

T YTk

.
Z [min(rt(ﬁ)f\?k, clip (re(0),1 — €, 1+ €) Ak)]]

t=0

where € is a hyperparameter (maybe ¢ = 0.2)
o Policy update is 0x,1 = arg maxg Egk“P(Q)

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

PPO: Adaptive KL Penalty

Input: initial policy parameters 6, initial KL penalty 5o, target KL-divergence 0
for k=0,1,2,... do

Collect set of partial trajectories Dy on policy mx = m(0k)

Estimate advantages /A\?" using any advantage estimation algorithm

Compute policy update

9k+1 — arg m@ax £9k ((9) —3 5/(DKL(9H9/<)

by taking K steps of minibatch SGD (via Adam)
if DKL(9k+1H(9k) > 1.5 then

Bi+1 = 2k

else if Dy (0k+1]|0k) < /1.5 then
Br+1 = Br/2

end if

end for

PPQO: Clipped Objective

» Recall the surrogate objective

LS (9) :@t[mo(ar | st) ;\t] — i, [rt(G)AAt]. (1)
g ld(at ‘ St)
» Form a lower bound via clipped importance ratios
LELIP(9) = TR, [min(rt(e)z\t, clip(ri(8),1 — ¢, 1+ E)Z\t)} (2)
A<O

LCLIP

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

PPQO: Clipped Objective

But how does clipping keep policy close? By making objective as pessimistic as possible
about performance far away from 6:

0.12 —— EdKLA]

0.10 LEP = E(rA]
0.08 - : —— Edclipr, 1—€, 1+ £)A]
0.06 - ' —— LCLP = EImin(rAy, clip(re 1 — €, 1 + €)A¢)]

0.04 -

0.02 1

0.00 -

—0.02

Linear interpolation factor

Figure: Various objectives as a function of interpolation factor o between 6,1 and 0, after one
update of PPO-Clip °

PPQO: Clipped Objective

Input: initial policy parameters 0y, clipping threshold €

for k=0,1,2,... do
Collect set of partial trajectories Dy on policy mx = w(6k)
Estimate advantages /2\?" using any advantage estimation algorithm
Compute policy update

Ok+1 = arg max L5, (6)

by taking K steps of minibatch SGD (via Adam), where

T
L5 (0) = B |3 [min(r(@)AT clip (r(6).1 — 1 +) AT¥)

t=0

end for

@ Clipping prevents policy from having incentive to go far away from 6.1

@ Clipping seems to work at least as well as PPO with KL penalty, but is simpler to
Implement

PPQO: Clipped Objective

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1

1000 i
2000 2500 8000 TR

A
AN 800
1500 N\
2000 My / 6000
1000 1500 600
4000

500 1000 400
=500

0 0 0

0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
— A2C
120 .
20 —— A2C + Trust Region
A 100 3000 —— CEM
40 80 —— PPO (Clip)
~60 60 2000 Vanilla PG, Adaptive
TRPO
-80 40
W
y.

20 7

=100
0

-120 0
0 1000000 0 1000000 0 1000000

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 10

summary

- Gradient Descent in Parameter VS distribution space

- Natural gradients: we need to keep track of how the KL changes
from iteration to iteration

Natural policy gradients
Clipped objective works well

Related Readings

S. Kakade. “A Natural Policy Gradient.” N/PS. 2001
S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. [CML. 2002

J. Peters and S. Schaal. “Natural actor-critic’. Neurocomputing (2008)
J. Schulman, S. Levine, P. Moritz, M. |. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. /CML (2015)

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. "“Proximal Policy Optimization Algorithms”. (2017)

J. Achiam, D. Held, A. Tamar, P. Abeel “Constrained Policy Optimization”. (2017)

