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Used Materials

e Much of the material and slides for this lecture were borrowed from
Katerina Fragkiadaki, and Ruslan Salakhutdinov



So far in the course

Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win the game.

Good: simple, cheap form of supervision
Bad: High sample complexity

Where is it successful so far?
In simulation, where we can afford a lot of trials, easy to parallelize

Not in robotic systems:
— action execution takes long
- we cannot afford to fail
- safety concerns

Offroad
navigation

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010



Reward shaping

|deally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?

1.We will manually design them: “cost function design by hand remains one of the ‘black
arts’ of mobile robotics, and has been applied to untold numbers of robotic systems”

2.We will learn them from demonstrations: “rather than having a human expert tune a
system to achieve desired behavior, the expert can demonstrate desired behavior and the
robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010



Reward shaping

|deally we want dense in time rewards to closely guide the agent closely along the way.
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Learning from Demonstrations

Learning from demonstrations a.k.a. Imitation Learning:

Supervision through an expert (teacher) that provides a set of
demonstration trajectories: sequences of states and actions.

Imitation learning is useful when it is easier for the expert to demonstrate
the desired behavior rather than:

a) coming up with a reward function that would generate such behavior,
b) coding up with the desired policy directly.
and the sample complexity is managable




Imitation Learning

Two broad approaches :

- Direct: Supervised training of policy (mapping states to
actions) using the demonstration trajectories as ground-
truth (a.k.a. behavior cloning)

- Indirect: Learn the unknown reward function/goal of the
teacher, and derive the policy from these,
a.k.a. Inverse Reinforcement Learning

Experts can be:
- Humans

- Optimal or near Optimal Planners/Controllers



Outline

Supervised training

e Behavior Cloning: Imitation learning as supervised learning
e Compounding errors

e Demonstration augmentation techniques

e DAGGER

Inverse reinforcement learning
e Feature matching
e Max margin planning

e Maximum entropy IRL



Learning from Demonstration: ALVINN 1989

Roimensty 4 Dinion Road follower

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

* Fully connected, single hidden layer, low resolution input from camera and lidar.
* Train to fit human-provided steering actions (i.e., supervised)
* First (?) use of data augmentation:

“In addition, the network must not solely be shown examples of accurate driving,
but also how to recover (i.e. return to the road center) once a mistake has been
made. Partial initial training on a variety of simulated road images should help
eliminate these difficulties and facilitate better performance. “ ALVINN: An
autonomous Land vehicle in a neural Network, [Pomerleau 1989]



Data Distribution Mismatch!
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Data Distribution Mismatch!

supervised learning +

supervised learning control (NAIVE)

Supervised Learning succeeds when training and test data distributions match.
But state distribution under learned mt differs from those generated by



Solution: Demonstration Augmentation

Change px+(0:) using demonstration augmentation!

Have expert label additional examples generated by the
learned policy (e.g., drawn from P icarned(0) )



Solution: Demonstration Augmentation

Change px+(0:) using demonstration augmentation!

Have expert label additional examples generated by the
learned policy (e.g., drawn from P icarned(0) )

How?
1. use human expert

2. synthetically change observed o, and corresponding u,



Demonstration Augmentation: NVIDIA 2016

End to End Learning for Self-Driving Cars
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We trained a convolutional neural network (CNN) to map raw pixels from a sin-
gle front-facing camera directly to steering commands. This end-to-end approach
proved surprisingly powerful. With minimum training data from humans the sys-
tem learns to drive in traffic on local roads with or without lane markings and on
highways. It also operates in areas with unclear visual guidance such as in parking
lots and on unpaved roads.
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Figure 4: CNN architecture. The network has about 27 million connections and 250 thousand

parameters.



Demonstration Augmentation: NVIDIA 2016
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automatic ground-
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mistakes

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built
the Autonomous Land Vehicle in a Neural Network (ALVINN) system. Training
with data from only the human driver is not sufficient. The network must learn
how to recover from mistakes. ...”,

End to End Learning for Self-Driving Cars , Bojarski et al. 2016



Data Augmentation (2): NVIDIA 2016

DAVE 2 Driving a Lincoln

- A convolutional neural network

- Trained by human drivers

- Learns perception, path planning, and control
"pixel in, action out”

- Front-facing camera is the only sensor

Synthesizes new state-action pairs by rotating and translating input
image, and calculating compensating steering command

[VIDEO]



Figure 7: How the CNN “sees™ an unpaved road. Top: subset of the camera image sent to the CNN.
Bottom left: Activation of the first layer feature maps. Bottom right: Activation of the second layer

feature maps. This demonstrates that the CNN learned to detect useful road features on its own, i.e.,
with only the human steering angle as training signal. We never explicitly trained it to detect the

outlines of roads.



DAGGER

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by iteratively labelling expert action for states generated by the current policy

1. train mg(u¢|og) from human data Dypx = {01, U1, ...,ON, UN }

run g (ug|og) to get dataset D, = {01, ...,0

vis
Ask human to label D, with actions U¢

3.
Execute current policy and Query Exper
4. Aggregate: D« < D« UD,_ T New Data
frome@ t"‘;@- \ % @
5. GOTO step 1. '
P N ( % ®
\\'i-s.\ ’4@
i
- Aggregate
P rO b | e m S : PNT'Wy ‘ ) & ggtafe'f All previous data
- execute an unsafe/partially trained policy % IS
repeatedly query the expert Supervised Learning

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011



DAGGER (in a real platform)

Application on drones: given RGB from the drone camera predict
steering angles

|

http://robotwhisperer.org/bird-muri/ VIDEO

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013



DAGGER (in a real platform)

Caveats:

1. Is hard for the expert to provide the right magnitude for the turn
without feedback of his own actions!
Solution: provide visual feedback to expert

2. The expert’s reaction time to the drone’s behavior is large, this
causes imperfect actions to be commanded.
Solution: play-back in slow motion offline and record their actions.

3. Executing an imperfect policy causes accidents, crashes into
obstacles.

Solution: safety measures which again make the data distribution
matching imperfect between train and test, but good enough.

Learning monocular reactive uav control in cluttered natural environments, Ross et al. 2013



Imitation Learning

Two broad approaches :

- Direct: Supervised training of policy (mapping states to
actions) using the demonstration trajectories as ground-
truth (a.k.a. behavior cloning)

* Indirect: Learn the unknown reward function/goal of the
teacher, and derive the policy from these,
a.k.a. Inverse Reinforcement Learning



Inverse Reinforcement Learning

Describes desirability
of being in a state.

Reward
Function R

-

Dynamics
Model T

Il

Reinforcement
Learning /
Optimal Control

Probability
distribution over next
states given current

state and action y

Given 7T, let’s recover R!

Controller/
Policy r*

e R [Fiéekic¥ébre§aiit'§t2tt§

Diagram: Pieter Abbeel



Problem Setup

* @Given:
- State space, action space - Dynamics (sometimes) Ts o [St41|8t, at]
 Noreward function - Teacher’s demonstration:

S0, ap, S1,0a1, 82,02, ...
(= trace of the teacher’s policy 7*)

* Inverse RL

« Can we recover R?
* Apprenticeship learning via inverse RL

- Can we then use this R to find a good policy?
* Behavioral cloning (previous)

- Can we directly learn the teacher’s policy using supervised learning?



Assumptions (for now)

- Known Dynamics (transition model) T
. Reward is a linear function over fixed state features ¢



Inverse RL with linear reward/cost function

Demonstration

Expert trajectory reward/cost



Principle: Expert is optimal

* Find a reward function R* which explains the expert behavior

* i.e., assume expert follows optimal policy, given her R*

* Find R*such that

E[Y v'R*(s))lm*] 2 E[)_+*R*(se)ln] v

t=0 t=0



Feature Based Reward Function

(We assume reward is linear over features)
Let R(s) =w'¢(s) where w € R and ¢:8S — R"

E[Y v R(se)lm] = E[Y_v'w ¢(s¢)|n]

= wTE[Y 46(s:) 7]

= w’ p(m)



Feature Based Reward Function

(We assume reward is linear over features)
Let R(s) =w'¢(s) where w € R and ¢:8S — R"

E[Y v R(se)lm] = E[Y_v'w ¢(s¢)|n]

= wTE[Y 46(s:) 7]

t=0 expected discounted sum of feature
values or feature expectations—
= w’” |pu(m) dependent on state visitation
distributions

Subfting into B[} _y*R*(s¢)|x*] > E[) _+'R*(st)|w] Vr

=0 =0

gives us:  Find w* such that w*¥ p(n*) > w* ' u(r) vr



1. Guess an initial reward function R(s)

2. Learn policy m(s) that optimizes R(s)
3. Whenever m(s) chooses action different from expert *(s)

e Update estimate of R(s) to assure
value of m*(s) > value of m(s)

4. Goto 2



Feature Matching

* Inverse RL starting point: find a reward function such that the
expert outperforms other policies

Let R(s) = w? ¢(s), where w € R”, and ¢ : § — R"

Find w* such that w*T u(7*) > w*Tp(r) Vr

Here we define'u(ﬂ*) as the expected discounted sum of feature values
obtained by following this policy.

Given m trajectories generated by following the policy, we estimate it as

LE = % Z:T; > =0 ’7%(5?))

Abbeel and Ng 2004



Feature Matching

* Inverse RL starting point: find a reward function such that the
expert outperforms other policies

Let R(s) = w? ¢(s), where w € R”, and ¢ : § — R"

Find w* such that w*T u(7*) > w*Tp(r) Vr

* Observation in Abbeel and Ng, 2004: for a policy 7 to be
guaranteed to perform as well as the expert policy px, it suffices
that the feature expectations match:

Ju(m) — p(m™) |l < e

Implies that for all w with ||w||e < 1:
w p(m) — w p(r*)| < e

Abbeel and Ng 2004



Why we wish to find a

7 such that ||u(7) — pg|2 < e. For such a 7, we would
have that for any w € R* (||w|; < 1),

IED - Zo 7' R(st)|mE] — E[}-—o Y R(st)|7]|  (6)
— T u(®) — sl 7
< Nwllof[p(7) — el (8)
< l-e=c¢ (9)

The first inequality follows from the fact that |z7y| <

gr| o||lyl|l2, and the second from cU wle < Uw||1 < 1.
in

o the problem is reduced to finding a policy 7 that

induces feature expectations p(7) close to pg. Our

Abbeel and Ng 2004



Apprenticeship Learning [Abbeel & Ng, 2004]

* Assume R, (s) = wl ¢(s) forafeature map ¢:S — R"
* Initialize: pick some policy g

* lterate for ¢t =1,2,...:

* “Guess” the reward function:
Find a reward function such that the teacher maximally
outperforms all previously found policies

max 7y
vwilwl]2<1

s.t. wlp(r*) >wlu(r)+v Vr e {m,m,...,mi_1}

- Find optimal control policy 7 for the current guess of the reward
function Ry,

.- v < e/2 exit the algorithm



IRL in Simple Grid World (top two curves),
Versus Three Supervised Learning Approaches
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Figure 4. Plot of performance vs. number of sampled tra-
jectories from the expert. (Shown in color, where avail-
able.) Averages over 20 instances are plotted, with 1 s.e.
errorbars. Note the base-10 logarithm scale on the z-axis.

Abbeel and Ng 2004



Apprenticeship Learning [Abbeel & Ng, 2004]

* Assume R, (s) = wl ¢(s) forafeature map ¢:S — R"
* Initialize: pick some policy g

* lterate for ¢t =1,2,...:

* “Guess” the reward function:
Find a reward function such that the teacher maximally
outperforms all previously found policies

max 7y
vwilwl]2<1

s.t. wlp(r*) >wlu(r)+v Vr e {m,m,...,mi_1}

- Find optimal control policy 7 for the current guess of the reward
function Ry,

.- v < e/2 exit the algorithm



Max-margin Classifiers

Here each point represents the
feature expectations for one policy.

We can label them as
the expert policy or not

And use SVM maximum margin
algorithms to derive weights for the
inferred reward function R

7/
7/

A

P »

,7 & 7 / 1
S

"Minimize ||w|| subjecttoy; (w - z; —b) > 1,fori =1, ..., n"



Max-margin Classifiers

We are given a training dataset of n points of the form
(ilayl)s EXT (fn7yn)

Where the y; are either 1 or -1, each indicating the class to which
the point Z; belongs. Each Z; is a p-dimensional real vector.

We want to find the “maximum-margin hyperplane” that divides the
group of points Z; , for which y; = 1 from the group of points for
which y; = —1, which is defined so that the distance between the
hyperplane and the nearest point Z; from either group is
maximized.

Any hyperplane can be written as the set of points I satisfying

w-r—b=20

where w is the normal vector the the hyperplane



Max Margin Planning

* Standard max margin:

: 2
min|[uw/3

s.t. wlp(r*) >wlp(n)+1 Vr

Maximum Margin Planning, Ratliff et al. 2006



Max Margin Planning

* Standard max margin:

min|uw?

s.t. wlp(r*) >wlp(n)+1 Vr
* “Structured prediction” max margin:

min|w]3

s.t. w! p(n*) > w pu(r) +m(n*,7) Vr

* Justification: margin should be larger for policies that are
very different from 7*

* Example: m(7*,7) = number of states in which 7™ and =
disagree

Maximum Margin Planning, Ratliff et al. 2006



Expert Suboptimality

* Structured prediction max margin with slack variables:

min||w||§ + C¢
w,§

s.t. wlp(n*) > wlp(n) +m(n*,7) — € Vr

* Can be generalized to multiple MDPs (could also be same MDP
with different initial state)

: 2 (4)
min ||wl||5 + C
mig ol + 03¢

st wl p(r®*) > w? p(7@®) + m(r@*, 7)) — @ g 70



Complete Max-margin Formulation

minw| +C 3 €O

st wlp(mr®*) > wl p(@®) + m(a@* 7®) — @y 70

* Challenge: very large number of constraints.

* Solution: iterative constraint generation

Maximum Margin Planning, Ratliff et al. 2006



Example: Learn Cost Function of Expert Driver

Figure 7: Components of a robot archi-

in the computer vision and robotics
fields. Depicted features include esti-
mates of color and texture, estimated
depth, and shape descriptors of a
LADAR point cloud. Features that are
not depicted here include estimates of
terrain slope, semantic labels (“rock”),
(Path to goal) and other feature descriptors that can
be assigned a location in a 2D grid
map. These features are then massaged
into an estimate of “traversability” — a
scalar value that indicates how difficult
it is for the robot to travel across the
location on the map.

O pti ma4a | CO nt ro I SO I uti on tecture: Sensors (LADAR, cameras) feed
a perception system that computes a
Cost Map rich set of features (left side) developed

e

Learning ”“'@”i

ii
11

Nathan D Ratliff, David Silver, and J Andrew Bagnell. Learning to search:
Functional gradient techniques for imitation learning. Autonomous Robots,
27(1):25-53, 2009b.



Example: Learn Cost Function of Expert Driver

LEARCH Algorithm: lteratively learn/refine a cost/reward
function that makes expert driver appear optimal.

(&9 , High Cost)
=) Learn F,
(al™, Low Cost)

Cost(x) = 1.0 + F,(x —




Example: Learn Cost Function of Expert Driver

ap-plied to provide automated interpre-
tation in traversability cost (Bottom)

of satellite imagery (Top) for use in
outdoor navigation. Brighter pixels
indicate a higher traversability cost on
a logarithmic scale. From left to right
illustrates progression of the algorithm,
where we see the current optimal plan
(green) progressively captures more of
the demonstration (red) correctly.



Something Different

* Learning from Demonstration

9

* Learning from Instruction more
generally?



SUGILITE: Creating Multimodal Smartphone
Automation by Demonstration

Toby Jia-Jun Li, 2Amos Azaria, 'Brad A. Myers
'Human-Computer Interaction Institute, Carnegie Mellon University
2Computer Science Department, Ariel University

{tobyli, bam}@cs.cmu.edu, amos.azaria@ariel.ac.il




Learning by Demonstration (B. Meyers, T. Li)

] 3 © " W 22:49 o 3 @ "4 w22:49
View Script: Send Email : View Script: Order Starbucks Coffee
STARTING SCRIPT STARTING SCRIPT
on the button "Gmail" in Home Screen p on the button "Starbucks" in Home Screen
on the button "Compose’ in Gmail ":u on the button "Starbucks, main navigation ~
to "tobyli@cs.cmu.edu" for the object at the menu" in Starbucks -
to "Sugilite Test Email Title" for the textbox on the button "CATEGORIES' in Starbucks

"Subject’ in Gmail

-~ on the button "Espresso Drinks" in Starbucks
to "Sugilite Message Body" for the textbox

"Compose email’ in Gmail on the bufton ” Cappuccinos . in ”S.tarbucks
on the button "Send" in Gmail on the object "Iced Cappuccino” in Starbucks

ENDING SCRIPT on the button at the screen location (1188 1944
1384 2140) in Starbucks

on the button "VIEW ORDER" in Starbucks
ENDING SCRIPT



|
 Ooen@wE "

instructable Agent

file:///Users/mitchell/
Documents/
My%20Documents/ppt/
LIA_tellKatie_3min.mp4




Learning From Showing and Telling

& Near Me Now

Please describe your intention for this

action
O Table for 2 tomorrow at 630 PM ~

Iwantto find a steakhousein &

Royal 35 Steakhouse midtown east

Save Operation Confirmation

CANCEL Are you sure you want to record the

opesation: Click on the item that has
text "Steakhouse” and text "Midtown
East” with the shortest distance

teakhouse

Murray Hi

b. APPINITE asks the user to

PP s Charfie Palmer Steak describe intentions for actions
N ) X MODIFY sk YES

Steakhouse

'—/ Midtown East
Current query
the item that has text "Steakhouse” and
) J text "Midtown East" (C1 (ARG MIN hasDistance
@ 1 person is view

(AND (hasChild (hasText “Steakhouse”))
(hasChild (hasText “Midtown East”))
(hasClass android.widget.Linearlayout)

Your query matches 2 items on
the screen. Please give additional

instructions on how to determine which
one to choose

choose the closest one )

Wolfgang's Steak House - Park Avenue

Steskhcuse ¢ (hasPackage com.opentable))))

Steakhouse

Midiown East 03nm

© 3 peopke are viewing this restaur © 3 pecyl
a. User demonstrates the action ¢. Multi-turn conversations d. User can view the result for the e. APPINITE generates formal
directly on unmodified GUIs of help users refine current query and the originally ~ executable data descrption queries
third party apps ambiguous descriptions clicked Ul object to be used in automation scripts

Fig. 1. Specifying data description in programming by demonstration using APPINITE: (a, b) enables users to naturally express their intentions for
demonstrated actions verbally; (c) guides users to formulate data descriptions to uniquely identify target GUI objects; (d) shows users real-time
updated results of current queries on an interaction overlay; and (e) formulates executable queries from natural language instructions.



