
Maximum Entropy Inverse RL,
Adversarial imitation learning

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Reinforcement Learning

High4level!picture!

Dynamics
Model T

 Reward
Function R

Reinforcement!
Learning /

Optimal Control!

Controller/
Policy π�!

Prescribes action to
take for each state

Probability
distribution over next
states given current

state and action Describes desirability
of being in a state.

Inverse RL:
 Given π*and T, can we recover R?
 More generally, given execution traces, can we recover R?

Diagram: Pieter Abbeel

IRL reverses the diagram: Given a finite set of demonstration trajectories, let’s
recover reward R and policy !

Inverse Reinforcement Learning

High4level!picture!

Dynamics
Model T

 Reward
Function R

Reinforcement!
Learning /

Optimal Control!

Controller/
Policy π�!

Prescribes action to
take for each state

Probability
distribution over next
states given current

state and action Describes desirability
of being in a state.

Inverse RL:
 Given π*and T, can we recover R?
 More generally, given execution traces, can we recover R?

Diagram: Pieter Abbeel

⇡⇤

IRL reverses the diagram: Given a finite set of demonstration trajectories, let’s
recover reward R and policy !
In contrast to the DAGGER setup, we cannot interactively query the expert for
additional labels.

Inverse Reinforcement Learning

High4level!picture!

Dynamics
Model T

 Reward
Function R

Reinforcement!
Learning /

Optimal Control!

Controller/
Policy π�!

Prescribes action to
take for each state

Probability
distribution over next
states given current

state and action Describes desirability
of being in a state.

Inverse RL:
 Given π*and T, can we recover R?
 More generally, given execution traces, can we recover R?

Diagram: Pieter Abbeel

⇡⇤

Mathematically imitation boils down to a distribution matching problem: the
learner needs to come up with a reward/policy whose resulting state, action
trajectory distribution matches the expert trajectory distribution.

Inverse Reinforcement Learning

High4level!picture!

Dynamics
Model T

 Reward
Function R

Reinforcement!
Learning /

Optimal Control!

Controller/
Policy π�!

Prescribes action to
take for each state

Probability
distribution over next
states given current

state and action Describes desirability
of being in a state.

Inverse RL:
 Given π*and T, can we recover R?
 More generally, given execution traces, can we recover R?

Maximum Entropy Inverse Optimal Control

ΘT

f1

ΘT

f5 ΘT

f3 ΘT

f2

ΘT

f4

ΘT

f7

ΘT

f10

ΘT

f11

ΘT

f9

ΘT

f8
ΘT

f12

ΘT

f13

ΘT

f17 ΘT

f18

ΘT

f19
ΘT

f14

ΘT f20

Start

Go

al

ΘT

f6

ΘT

f16

ΘT

f15

Roads have unknown costs (linear in features)

27

• Roads have unknown costs linear in features
• Paths (trajectories) have unknown costs, sum of road (state) costs
• Experts (taxi-drivers) demonstrate Pittsburgh traveling behavior
• How can we learn to navigate Pitts like a taxi (or uber) driver?

A simple example

• Assumption: cost is independent of the goal state, so it only depends on road
features, e.g., traffic width tolls etc.

State featuresLearning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Bridges crossed

Miles of interstate

Stoplights

Maximum Entropy Inverse Optimal Control

ΘT

f1

ΘT

f5 ΘT

f3 ΘT

f2

ΘT

f4

ΘT

f7

ΘT

f10

ΘT

f11

ΘT

f9

ΘT

f8
ΘT

f12

ΘT

f13

ΘT

f17 ΘT

f18

ΘT

f19
ΘT

f14

ΘT f20

Start

Go

al

ΘT

f6

ΘT

f16

ΘT

f15

Roads have unknown costs (linear in features)

27

Features f can be:

A good guess: Match expected featuresLearning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Bridges crossed

Miles of interstate

Stoplights

Maximum Entropy Inverse Optimal Control

ΘT

f1

ΘT

f5 ΘT

f3 ΘT

f2

ΘT

f4

ΘT

f7

ΘT

f10

ΘT

f11

ΘT

f9

ΘT

f8
ΘT

f12

ΘT

f13

ΘT

f17 ΘT

f18

ΘT

f19
ΘT

f14

ΘT f20

Start

Go

al

ΘT

f6

ΘT

f16

ΘT

f15

Roads have unknown costs (linear in features)

27

Features f can be:

Feature matching:
X

Path⌧i

P (⌧i)f⌧i = f̃

“If a driver uses136.3 miles of interstate and
crosses 12 bridges in a month’s worth of trips,
the model should also use 136.3 miles of
interstate and 12 bridges in expectation for
those same start-destination pairs.”

A good guess: Match expected featuresLearning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Bridges crossed

Miles of interstate

Stoplights

Maximum Entropy Inverse Optimal Control

ΘT

f1

ΘT

f5 ΘT

f3 ΘT

f2

ΘT

f4

ΘT

f7

ΘT

f10

ΘT

f11

ΘT

f9

ΘT

f8
ΘT

f12

ΘT

f13

ΘT

f17 ΘT

f18

ΘT

f19
ΘT

f14

ΘT f20

Start

Go

al

ΘT

f6

ΘT

f16

ΘT

f15

Roads have unknown costs (linear in features)

27

Features f can be:

Feature matching:
X

Path⌧i

P (⌧i)f⌧i = f̃

Demonstrated feature counts

A good guess: Match expected featuresLearning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Bridges crossed

Miles of interstate

Stoplights

Maximum Entropy Inverse Optimal Control

ΘT

f1

ΘT

f5 ΘT

f3 ΘT

f2

ΘT

f4

ΘT

f7

ΘT

f10

ΘT

f11

ΘT

f9

ΘT

f8
ΘT

f12

ΘT

f13

ΘT

f17 ΘT

f18

ΘT

f19
ΘT

f14

ΘT f20

Start

Go

al

ΘT

f6

ΘT

f16

ΘT

f15

Roads have unknown costs (linear in features)

27

Features f can be:

Feature matching:
X

Path⌧i

P (⌧i)f⌧i = f̃

Demonstrated feature counts

p(⌧) = p(s1)
Y

p(at|st)P (st+1|st, at)
a policy induces a distribution over trajectories

AmbiguityLearning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Bridges crossed

Miles of interstate

Stoplights

Features f can be:

Feature matching:
X

Path⌧i

P (⌧i)f⌧i = f̃

Demonstrated feature counts

p(⌧) = p(s1)
Y

p(at|st)P (st+1|st, at)
a policy induces a distribution over trajectories

However, many distributions over paths can
match feature counts, and some will be very
different from observed behavior. The model
could produce a policy that avoid the
interstate and bridges for all routes except
one, which drives in circles on the interstate
for 136 miles and crosses 12 bridges.

Principle of Maximum Entropy

The probability distribution which best represents the current
state of knowledge is the one with largest entropy, in the context
of precisely stated prior data (such as a proposition that
expresses testable information).
Another way of stating this: Take precisely stated prior data or
testable information about a probability distribution function.
Consider the set of all trial probability distributions that would
encode the prior data. The distribution with maximal information
entropy is the best choice.

• Maximizing entropy minimizes the amount of prior information built into the
distribution

• Many physical systems tend to move towards maximal entropy
configurations over time

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Proposition
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy#Testable_information
https://en.wikipedia.org/wiki/Information_entropy
https://en.wikipedia.org/wiki/Information_entropy
https://en.wikipedia.org/wiki/Prior_information
https://en.wikipedia.org/w/index.php?title=Maximal_entropy_configuration&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Maximal_entropy_configuration&action=edit&redlink=1

Resolve Ambiguity by Maximum EntropyLearning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Bridges crossed

Miles of interstate

Stoplights

Features f can be:

Feature matching constraint:
X

Path⌧i

P (⌧i)f⌧i = f̃

Demonstrated feature counts

p(⌧) = p(s1)
Y

p(at|st)P (st+1|st, at)
a policy induces a distribution over trajectories

Let’s pick the policy that satisfies feature
count constraints without over-committing!

max
P

�
X

⌧

P (⌧) logP (⌧)

Maximizing the entropy over paths:

While matching feature counts (and being a probability distribution):

Maximum Entropy Inverse Optimal Control

as uniform as possible

X

⌧

P (⌧)f⌧ = fdem

X

⌧

P (⌧) = 1

max
P

�
X

⌧

P (⌧) logP (⌧)

Cost of a trajectory (linear):

Constraint: Match the cost of expert trajectories in expectation:Z
p(⌧)c✓(⌧)d⌧ =

1

|D|
X

⌧⇤2D⌧

c✓(⌧
⇤)

Maximum Entropy

min . �H(p(⌧))

s.t.

Z
p(⌧)c✓(⌧)d⌧ = c̃,

Z
p(⌧)d⌧ = 1

⌧

c✓(⌧) = ✓T f⌧ =
X

s2⌧

✓T fs

From features to costs

@L
@p

= log p(⌧) + 1 + �1c✓(⌧) + �0

() L(p,�) =
Z

p(⌧) log(p(⌧))d⌧ + �1(

Z
p(⌧)c✓(⌧)d⌧ � c̃)

+�0(

Z
p(⌧)d⌧ � 1)

p(⌧) = e(�1��0��1c✓(⌧))

@L
@p

= 0 () log p(⌧) = �1� �1c✓(⌧)� �0 () p(⌧) / ec✓(⌧)

Maximum Entropy min . �H(p(⌧))

s.t.

Z
p(⌧)c✓(⌧)d⌧ = c̃,

Z
p(⌧)d⌧ = 1

From maximum entropy to exponential family

@L
@p

= 0 () log p(⌧) = �1� �1c✓(⌧)� �0 () p(⌧) / ec✓(⌧)

From maximum entropy to exponential family

• Strong Preference for Low Cost Paths
• Equal Cost Paths Equally Probable

• Maximizing the entropy of the distribution over paths subject to the feature
constraints from observed data implies that we maximize the likelihood of the
observed data under the maximum entropy (exponential family) distribution
(Jaynes 1957)

P (⌧i|✓) =
1

Z(✓)
e✓

T f⌧i =
1

Z(✓)
e
P

sj2⌧i
✓T fsj

Z(✓, s) =
X

⌧S

e✓
T f⌧S

Maximum Likelihood
max

✓
. log

Y

⌧⇤2D

p(⌧⇤) () max
✓

.
X

⌧⇤2D

log p(⌧⇤)

max
✓

.
X

⌧⇤2D

log
e�c✓(⌧

⇤)

Z

max
✓

.
X

⌧⇤2D

�c✓(⌧
⇤)�

X

⌧⇤

log(
X

⌧

e�c✓(⌧))

max
✓

.
X

⌧⇤2D

�c✓(⌧
⇤)� log(

X

⌧

e�c✓(⌧))|D|

min
✓

.
X

⌧⇤2D

c✓(⌧
⇤) + |D| log(

X

⌧

e�c✓(⌧)) ! J(✓)

r✓J(✓) =
X

⌧⇤2D

dc✓(⌧⇤)

d✓
+ |D| 1P

⌧ e
�c✓(⌧)

X

⌧

(e�c✓(⌧) � dc✓(⌧)

d✓
)∑

τ (e−cθ(τ) (−
dcθ(τ)

dθ))

=
X

⌧⇤2D

dc✓(⌧⇤)

d✓
+ |D|

X

⌧

p(⌧ |✓)dc✓(⌧)
d✓

−

From trajectories to states

Successful imitation boils down to
learning a policy that matches the state
visitation distribution (or state/action
visitation distribution)

p(⌧) = p(s1)
Y

p(at|st)P (st+1|st, at)

c✓(⌧) =
X

s2⌧

c✓(s)) p(⌧)1e�
P

s2⌧c✓(s)

X

s,a

p(s, a|✓, ⌧)dc✓(s, a)
d✓

r✓J(✓) =
X

s2⌧⇤2D

dc✓(s)

d✓
+ |D|

X

s

p(s|✓, ⌧)dc✓(s)
d✓

−

p(τ)∞e−cθ(τ)

p(τ)∞e−∑s∈τ cθ(s)c✓(⌧) =
X

s2⌧

c✓(s)) p(⌧)1e�
P

s2⌧c✓(s)

State densities
In the tabular case and for known dynamics we can compute them
with dynamic programming, assuming we have obtained the policy:

µ1(s) = p(ss)

for t = 1, ..., T

µt+1(s) =
X

a

X

s0

µt(s
0)p(a|s0)p(s|s0, a)

p(s|✓, T) =
X

t

µt(s)

c✓(s) = ✓T fsFor linear costs:

∇θJ(θ) = ∑
s∈τ*

fs + |D |∑
s

p(s |θ, 𝒯)fs

Time indexed state densities

r✓J(✓) =
X

st2⌧⇤2D

dc✓(s)

d✓
+ |D|

X

s

p(s|✓, T)
dc✓(s)

d✓
−

Maximum entropy Inverse RL

• Body Level One
• Body Level Two

• Body Level Three
• Body Level Four

Body Level Five

12

Maximum Entropy Inverse RL
(Ziebart et al. ’08)

Known dynamics, linear costs

−

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: ?

Cost

Weight:

5.0

Miles of

interstate:

?

Cost

Weight:

3.0

Stoplights

:

? 31

Maximum entropy Inverse RL

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: 4.7

 +1.7

Cost Weight:

5.0

Miles of

interstate:

16.2

 ‐4.5

Cost

Weight:

3.0

Stoplights

:

7.4

 ‐2.6

34

Maximum entropy Inverse RL

Learning from DemonstraGon

Demonstrated Behavior

Bridges

crossed: 3

Miles of

interstate:

20.7

Stoplights:

10

Model Behavior (ExpectaIon)

Bridges

crossed: 4.7

7.2

Cost Weight:

5.0

Miles of

interstate:

16.2

1.1

Cost

Weight:

3.0

Stoplights

:

7.4 35

Maximum entropy Inverse RL

Limitations of MaxEntIRL

• Cost was assumed linear over features f
• Dynamics T were assumed known

Next:
• General function approximations for the cost: Finn et al. 2016
• Unknown Dynamics -> sample based approximations for the partition

function Z: Boularias et al. 2011, Kalakrishnan et al. 2013, Finn et al.
2016

MaxEnt IRL general cost function
guided cost learning

update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

Cost of a trajectory is
decomposed over costs
of individual states

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

Cost of a trajectory is
decomposed over costs
of individual states

MaxEnt IRL general cost function

Before:
cθ(xt, ut) = θ⊤f(xt, ut)

MaxEnt IRL general cost function

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

Cost of a trajectory is
decomposed over costs
of individual states

In the form of a loss function:

Before:
cθ(xt, ut) = θ⊤f(xt, ut)

Approximating Z with Importance Sampling

guided cost learning
update cost in inner loop of policy optimization

MaxEnt IOC objective (Ziebart et al. ’08)

sample adaptively to estimate Z
[by constructing a policy]

max
✓

X

⌧2D
log pc✓ (⌧)

⌧ = {x0, u0, ..., xt, ut, ..., xT }
C✓(⌧) =

X

t

c✓(xt, ut)

p(⌧) =
1

Z
exp(�C✓(⌧))

Z =

Z
exp(�C✓(⌧))d⌧

sample to estimate Z

MaxEntIOC with Importance Sampling

MaxEntIOC with Importance Sampling

MaxEntIOC with Importance Sampling

Adapting the sampling distribution q

What should be the sampling distribution q?
• Uniform: Boularias et al. 2011
• In the vicinity of demonstrations: Kalakrishnan et al. 2013
• Refine it over time! Finn at al. 2016: Interleave IRL with policy

optimization, then sample trajectories according to the policy -> better
trajectories (have much higher likelihood) guided by your current
estimate of the cost

MaxEntIRL with Adaptive Importance Sampling

23

What about unknown dynamics?
Adaptive importance sampling

This can be any method that given rewards computes a policy (the forward
RL problem)
Given expert demonstrations and policy sampled trajectories improve
rewards/costs (Inverse RL)

Diagram from Chelsea Finn

MaxEntIRL with Adaptive Importance Sampling

Update cost using
samples & demos

generate policy
samples from q

update q w.r.t. cost

x

x

x

1

2

n

h

h

h

1

2

k

h

h

h

1

2

p

(1)

(1)

(1)

(2)

(2)

(2)

h

h

h

1

2

m

(3)

(3)

(3)

c (x)θ
2

policy q cost c

guided cost learning algorithm

Diagram from Chelsea Finn

Generator Discriminator

Generative Adversarial Networks

Generator

Discriminator
z ~ uniform([0, 1])

Real Data x

D(x): the probability that x came from the data rather than the generator

min
G

max
D

𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

Discriminative Deep Learning

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Discriminative deep learning
• Recipe for success

2

x

Recipe for success

Generative Modeling

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Generative modeling

• Have training examples x ~ pdata(x)

• Want a model that can draw samples: x ~
pmodel(x)

• Where pmodel ≈ pdata

5

x ~ pdata(x) x ~ pmodel(x)

• Have training examples

• Want a model that can draw samples:

• Where

x ⇠ pdata(x)

x ⇠ pmodel(x)

pmodel ⇡ pdata

Why generative models?
• Conditional generative models

• Speech synthesis: Text->Speech

• Machine Translation: French->English

• French: Si mon tonton tond ton tonton, ton tonton sera tondu.

• English: If my uncle shaves your uncle, your uncle will be
shaved

• Image->Image segmentation

• Environment simulator

• Reinforcement learning

• Planning

• Leverage unlabeled data

Maximum Likelihood: the dominant approach

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Maximum likelihood: the dominant approach

• ML objective function

7

✓⇤ = max
✓

1

m

mX

i=1

log p
⇣
x(i); ✓

⌘

1

Undirected Graphical Models

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Undirected graphical models

• State-of-the-art general purpose undirected
graphical model: Deep Boltzmann machines

• Several “hidden layers” h

8

p(h, x) =
1

Z
p̃(h, x)

p̃(h, x) = exp(�E(h, x))

Z =
�

h,x

p̃(h, x)

h(1)

h(2)

h(3)

x

• State-of-the-art general purpose undirected graphical
model: Deep Boltzmann machines

• Several “hidden layers” h

Undirected Graphical Models: Disadvantage

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Undirected graphical models: disadvantage

• ML Learning requires that we draw samples:

• Common way to do this is via MCMC (Gibbs sampling).

9

h(1)

h(2)

h(3)

x

✓⇤ = max
✓

1

m

mX

i=1

log p
⇣
x(i); ✓

⌘

p(h, x) =
1

Z
p̃(h, x)

p̃(h, x) = exp (�E (h, x))

Z =
X

h,x

p̃(h, x)

d

d✓i
log p(x) =

d

d✓i

"
log

X

h

p̃(h, x)� logZ(✓)

#

d

d✓i
logZ(✓) =

d
d✓i

Z(✓)

Z(✓)

p(x, h) = p(x | h(1))p(h(1) | h(2)) . . . p(h(L�1) | h(L))p(h(L))

1

• ML Learning requires that we draw samples

Directed graphical models

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Directed graphical models

• Two problems:
1. Summation over exponentially many states in h
2. Posterior inference, i.e. calculating p(h | x), is intractable.

12

✓⇤ = max
✓

1

m

mX

i=1

log p
⇣
x(i); ✓

⌘

p(h, x) =
1

Z
p̃(h, x)

p̃(h, x) = exp (�E (h, x))

Z =
X

h,x

p̃(h, x)

d

d✓i
log p(h, x) =

d

d✓i
[log p̃(h, x)� logZ(✓)]

d

d✓i
logZ(✓) =

d
d✓i

Z(✓)

Z(✓)

p(x, h) = p(x | h(1))p(h(1) | h(2)) . . . p(h(L�1) | h(L))p(h(L))

1

h(1)

h(2)

h(3)

x

d

d�i
log p(x) =

1

p(x)

d

d�i
p(x)

p(x) =
�

h

p(x | h)p(h)

• Two problems:

1. Summation over exponentially many states in h

2. Posterior inference, i.e. calculating , is
intractable

p(h|x)

Directed graphical models: new approaches

The Variational Autoencoder model:
• Kingma and Welling, Auto-Encoding Variational Bayes, International

Conference on Learning Representations (ICLR) 2014
• Rezende, Mohamed and Wierstra, Stochastic back-propagation and

variational inference in deep latent Gaussian models. ArXiv.

Use a reparametrization that allows them to train very efficiently with gradient
backpropagation

Generative Adversarial Networks

• A game between two players:
1. Discriminator D
2. Generator G

• D tries to discriminate between:
• A sample from the data distribution
• And a sample from the generator G

• G tries to “trick” D by generating samples that are had for D to
distinguish from data

• General strategy: Do not write a formula for p(x), just learn to sample
directly. No intractable summations

• Body Level One
• Body Level Two

• Body Level Three
• Body Level Four

Body Level Five

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Adversarial nets framework

20

Input noise
Z

Differentiable
function G

x sampled
from model

Differentiable
function D

D tries to
output 0

x sampled
from data

Differentiable
function D

D tries to
output 1

xx

z

Generative Adversarial NetworksGenerative Adversarial Networks

Zero-sum game

• Body Level One
• Body Level Two

• Body Level Three
• Body Level Four

Body Level Five

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

• Minimax objective function:

• In practice, to estimate G we use:

Why? Stronger gradient for G when D is very good.

Zero-sum game

21

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

max
G

Ez∼pz(z)[logD(G(z))]

Adapted from Ian Goodfellow

Learning process

• Body Level One
• Body Level Two

• Body Level Three
• Body Level Four

Body Level Five

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Learning process

23

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

pD(data)

Diagram from Ian Goodfellow

Learning process

• Body Level One
• Body Level Two

• Body Level Three
• Body Level Four

Body Level Five

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Learning process

24

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

pD(data)

Diagram from Ian Goodfellow

Learning process

• Body Level One
• Body Level Two

• Body Level Three
• Body Level Four

Body Level Five

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Learning process

25

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

pD(data)

Diagram from Ian Goodfellow

Learning process

• Body Level One
• Body Level Two

• Body Level Three
• Body Level Four

Body Level Five

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Learning process

26

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

pD(data)

Diagram from Ian Goodfellow

GANs are both fun and useful

male -> female

Adversarial Inverse Graphics Networks, Tung et al. 2017

GANs are both fun and useful

anybody -> Tom Cruise

Adversarial Inverse Graphics Networks, Tung et al. 2017

Find a policy that makes it impossible for a discriminator network to
distinguish between trajectory chunks visited by the expert and by the learner’s
application of :

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

• Minimax objective function:

• In practice, to estimate G we use:

Why? Stronger gradient for G when D is very good.

Zero-sum game

21

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

max
G

Ez∼pz(z)[logD(G(z))]

Reward for the policy optimization is how well I matched the demo
trajectory distribution, else, how well I confused the discriminator:

logD(s)

min
⇡✓

max
D

E⇤
⇡[logD(s)] + E⇡✓ [log(1�D(s))]

⇡✓

⇡✓

D outputs 1 if state comes from the demo policy

Generative Adversarial Imitation learning

36

Case Study: Generative Adversarial Imitation Learning

NIPS 2016

37

Case Study: Generative Adversarial Imitation Learning

- demonstrations from TRPO-optimized policy
- use TRPO as a policy optimizer
- OpenAI gym tasks

Generative Adversarial Imitation learning

