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Reinforcement Learning

Dynamics Probability
Model T distribution over next
_ states given current
Describes desirability state and action
of being in a state. J
v
Reward R?_lnforqement Controller/
Function R earning / Policy =*
Optimal Control

e H [Fl?k?%bfé’aiﬁ“itlfé’

Diagram: Pieter Abbeel



Inverse Reinforcement Learning

Dynamics Probability
Model T distribution over next
states given current
Describes desirability state and action
of being in a state. J
v
Reward R?_lnforqem/ent Controller/
Function R earning Policy =*

Optimal Control
arg max, B[S, v/ R(s¢)|7] Prescribes action to
take for each state

IRL reverses the diagram: Given a finite set of demonstration trajectories, let’s
recover reward R and policy 7™ !

Diagram: Pieter Abbeel



Inverse Reinforcement Learning

Dynamics Probability
Model T distribution over next

states given current

Describes desirability state and action
of being in a state. J
v
Reward R?_lnforqem/ent Controller/
Function R earning Policy =*

Optimal Control
arg max, B[S, v/ R(s¢)|7] Prescribes action to
take for each state

IRL reverses the diagram: Given a finite set of demonstration trajectories, let’s
recover reward R and policy 77* |

In contrast to the DAGGER setup, we cannot interactively query the expert for
additional labels.

Diagram: Pieter Abbeel



Inverse Reinforcement Learning

Dynamics Probability
Model T distribution over next
states given current
Describes desirability state and action
of being in a state. J
v
Reward R?_lnforqem/ent Controller/
Function R earning Policy =*

Optimal Control
arg max, B[S, v/ R(s¢)|7] Prescribes action to
take for each state

Mathematically imitation boils down to a distribution matching problem: the
learner needs to come up with a reward/policy whose resulting state, action
trajectory distribution matches the expert trajectory distribution.



A simple example

- Roads have unknown costs linear in features
- Paths (trajectories) have unknown costs, sum of road (state) costs
- Experts (taxi-drivers) demonstrate Pittsburgh traveling behavior
- How can we learn to navigate Pitts like a taxi (or uber) driver?
(IR
o= of,. orf,

- Assumption: cost is independent of the goal state, so it only depends on road
features, e.qg., traffic width tolls etc.



State features

Features f can be:

# Bridges crossed




A good guess: Match expected features

Features f can be:

# Bridges crossed

Feature matching:

SLWaN # \iles of interstate Z P(ri)f,. = 7
— : 1 T,
PathT;

“If a driver uses136.3 miles of interstate and
crosses 12 bridges in a month’s worth of trips,
the model should also use 136.3 miles of
Interstate and 12 bridges in expectation for
those same start-destination pairs.”




A good guess: Match expected features

Features f can be:
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Feature matching:
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A good guess: Match expected features

Features f can be:

# Bridges crossed

Feature matching:

SLNaN # Miles of interstate S P@)f, =1
- . (2 T: =
' R PathT;

a policy induces a distribution over trajectories
p(T) = p(s1) Hp(at\st)P(3t+1\St7at)




Ambiguity

Features f can be:

However, many distributions over paths can
match feature counts, and some will be very
different from observed behavior. The model
could produce a policy that avoid the
interstate and bridges for all routes except
one, which drives in circles on the interstate
for 136 miles and crosses 12 bridges.

# Bridges crossed

Feature matching:

SLWaN # \iles of interstate Z P(ri)f,. = 7
— : 1 T,
PathT;

a policy induces a distribution over trajectories
p(T) = p(s1) Hp(at\st)P(3t+1\3t7at)




Principle of Maximum Entropy

H(X) = — Zj: P(z;)log, P(x;)

The probability distribution which best represents the current
state of knowledge is the one with largest entropy, in the context
of precisely stated prior data (such as a proposition that
expresses testable information).

Another way of stating this: Take precisely stated prior data or
testable information about a probability distribution function.
Consider the set of all trial probability distributions that would
encode the prior data. The distribution with maximal information
entropy is the best choice.

- Maximizing entropy minimizes the amount of prior information built into the
distribution

» Many physical systems tend to move towards maximal entropy
configurations over time


https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Proposition
https://en.wikipedia.org/wiki/Principle_of_maximum_entropy#Testable_information
https://en.wikipedia.org/wiki/Information_entropy
https://en.wikipedia.org/wiki/Information_entropy
https://en.wikipedia.org/wiki/Prior_information
https://en.wikipedia.org/w/index.php?title=Maximal_entropy_configuration&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Maximal_entropy_configuration&action=edit&redlink=1

Resolve Ambiguity by Maximum entropy

Features f can be: _ _ o
Let’s pick the policy that satisfies feature

| count constraints without over-committing!
# Bridges crossed

Feature matching constraint:

# Miles of interstate Z P(ri)f,, = f
PathT;

a policy induces a distribution over trajectories
p(T) = p(s1) Hp(at\st)P(3t+1\St7at)




Maximum Entropy Inverse Optimal Control

Maximizing the entropy over paths: as uniform as possible

While matching feature counts (and being a probability distribution):

ZP(T)fT — fdem

» P(r)=1

T



From features to costs

Cost of a trajectory 7 (linear):
co(T) =0"F =) 0'f,

SET

Constraint: Match the cost of expert trajectories in expectation:

[ pncardr = 3 alr)

‘ ‘T*EDT

Maximum Entropy



From maximum entropy to exponential family

Maximum Entropy min. — H(p(7))

.t / p(T)eo(T)dT = ¢, / p(r)dr =1

— Lp\) = / p(r) log(p(7))dr + i / p(r)co(r)dr — &
W / p(F)dr — 1)

oL
a_p — ]Qgp(T) + 1+ )\169(7') + Ao
g_i =0 <= logp(r) = —1 — Areo(T) — Ao

p(T):e(—l—Ao—Alc@(T)) p(T) ~ 669(7-



From maximum entropy to exponential family

 Maximizing the entropy of the distribution over paths subject to the feature
constraints from observed data implies that we maximize the likelihood of the
observed data under the maximum entropy (exponential family) distribution

(Jaynes 1957)

L L SR S DS
Z(0) Z(0)

Z(0,s) = Z e? Irs
Ts

P(7i|0) =

- Strong Preference for Low Cost Paths
- Equal Cost Paths Equally Probable



Maximum Likelihood

max . long ") <:>max ZIOgP ")

T*eD T*eD
6—09(7‘ )
Max . Z log G
T*eD
_ ¥\ _ —co(T)
max. » —cg(r7) = ) log(p e )
T*eD T* T
max . —co(T") — log(z e~(T)|D|
/ T*eD T
. * —co(T)
min. > co(t*) +|D|log( )y e ) — J(6)
T*eD T
dcg(T") 1 oo def®)
Vo (0) = > . ‘D|Z o—co(7) Z<e ()<_ a6 ))
T*eD 0 T




From trajectories to states

p(1) = p(s1) | | placlse) P(siialse, ar)

p(t)ooe =P

SCT
dcy (s dcg(s)
Vor) = Y T iD)S pslo )
seT*eD S

Successful imitation boils down to

learning a policy that matches the state Zp(s alf, 7)
visitation distribution (or state/action L

visitation distribution)




State densities

In the tabular case and for known dynamics we can compute them
with dynamic programming, assuming we have obtained the policy:

Nl(s) :p(ss)
fort=1,...,7T

pet1(S S‘S‘Mt p(als)p(sls’, a)

SM9IT’ Eijllt
Vel (B)= 3 dCe() ‘D‘Zp (5[0, 7) dC@()

do
steT*ED

Time indexed state densities

For linear costs: C@(S) — 9Tfs

Vol 0) = ) fi+ |D\Zp<sw T,

set®



Maximum entropy Inverse RL

Known dynamics, linear costs

0. Initialize 6, gather demonstrations D

1. Solve for optimal policy m(a|s) w.r.t. ¢y with value iteration
2. Solve for state visitation frequencies p(s|0,T)

3. Compute gradient VoL = .M Z 5 Zp s|0,T)fs

T4 €D

4. Update 0 with one gradient step using VL



Maximum entropy Inverse RL

Demonstrated Behavior Model Behavior (Expectation)

Bridges Bridges
crossed: 3 crossed: ?

Miles of
Interstate:
20.7

Miles of
Interstate:




Maximum entropy Inverse RL

Demonstrated Behavior Model Behavior (Expectation)

Bridges Bridges
crossed: 3 crossed:

Miles of
Interstate:
20.7




Maximum entropy Inverse RL

Demonstrated Behavior Model Behavior (Expectation)

Bridges Bridges
crossed: 3 crossed: 4.7

Miles of
Interstate:
20.7

_Miles of
Interstate:




Limitations of MaxEntIRL

» (Cost was assumed linear over features f
 Dynamics T were assumed known

Next:
- General function approximations for the cost: Finn et al. 2016

- Unknown Dynamics -> sample based approximations for the partition
function Z: Boularias et al. 2011, Kalakrishnan et al. 2013, Finn et al.
2016



MaxEnt IRL general cost function

Cost of a trajectory is
decomposed over costs
of individual states

Co(T) =) colas,ur)

t

m@ax
TED
(1) = ~ exp(—C
— — X —_
P\T 7 P 0



MaxEnt IRL general cost function

Cost of a trajectory is
decomposed over costs
of individual states

Co(T) =) colay,ur)

t

Before:
.
cy(x,u) =0 '1(x, u)

m@ax
TED
(1) = ~ exp(—C
— — X —_
P\T 7 P 0



MaxEnt IRL general cost function

decomposed over costs
of individual states

Co(T) =) colay,ur)

t

Cost of a trajectory is \Z /e p( C (T))dT
— X — U0

In the form of a Ioss function:

Before: Lioc(0) = N Z co(7;) + log Z

Colx,, U,) = QTf(xt, U, s € Ddemo



Approximating Z with Importance Sampling




MaxEntlOC with Importance Sampling




MaxEntlOC with Importance Sampling

1
Lioc(0) = N Z co(7i) +log Z
T+ € Ddemo
1 ! exp(—co(7;))

T: € Ddemo T € Dsamp



MaxEntlOC with Importance Sampling

exp(—ce(75))
q(74)

w4y =

d»CIOC o 1 dCQ 1 dCQ
B "N 2wz 2 vigg )



Adapting the sampling distribution g

What should be the sampling distribution q?
- Uniform: Boularias et al. 2011
- In the vicinity of demonstrations: Kalakrishnan et al. 2013

- Refine it over time! Finn at al. 2016: Interleave IRL with policy
optimization, then sample trajectories according to the policy -> better
trajectories (have much higher likelihood) guided by your current
estimate of the cost



MaxEntIRL with Adaptive Importance Sampling

1: Initialize g (7) as either a random initial controller or from
demonstrations
for iteration 2 = 1to I do
Generate samples Dy,j from qx (7)
Append samples: Dsamp ¢— Dsamp U Diraj
(Use Dsamp to update cost ¢y using gradient descent )

Cj—:date qr (7) using Dy, and the method from (Levine & J
A

AR AR b

bbeel, 2014) to obtain g+1(7)
: end for
: return optimized cost parameters € and trajectory distribu-
tion q(7)

o0

This can be any method that given rewards computes a policy (the forward
RL problem)

Given expert demonstrations and policy sampled trajectories improve
rewards/costs (Inverse RL)

Diagram from Chelsea Finn



MaxEntIRL with Adaptive Importance Sampling

~ )
initial human
distribution q,, demonstrations
| /\ \ | j
generate policy & @ @
samples from D R
g - QAR
& 1@
Update cost using

\_/samples & demos

update g w.r.t. cost
policy g cost C

Diagram from Chelsea Finn



GGenerative Adversarial Networks

D(x): the probability that x came from the data rather than the generator

mgn mgx Evp,. ollog D]+ E ., »[log(1-D(G(2)))]

Real Data X




Discriminative Deep Learning

Recipe for success




Generative Modeling

« Have training examples X ~ Pgata(X)

« Want a model that can draw samples: X ~ Pmodel (X)

 Where puodel = Pdata

- -I® 5[ =
— L= | s
S S| ® A SIS T
L ) &
< - | <

o o=l =la &
ra >o- /v\ -
EE

S & -
- &P\
t:' C\ -
b - L L
“a 4 >y v v — — a\ 4) ;\ ,;.
. & -
- - = -
3 L. A

X ~ pdata(x )




Why generative models”

* Conditional generative models
* Speech synthesis: Text->Speech
* Machine Translation: French->English
 French: Si mon tonton tond ton tonton, ton tonton sera tondu.

* English: If my uncle shaves your uncle, your uncle will be
shaved

* Image->lmage segmentation
e Environment simulator

* Reinforcement learning

* Planning

* Leverage unlabeled data



Maximum Likelihood: the dominant approach

1 m |
0 max - ;:1 ogplx'; 0



Undirected Graphical Models

» State-of-the-art general purpose undirected graphical
model: Deep Boltzmann machines

« Several “hidden layers” h

h(3>[© O o0 O Q]

1 (2)
p(h,2) = i(h, ) e 90




Undirected Graphical Models: Disadvantage

* ML Learning requires that we draw samples

h(3>[© O oo O Q]

d g T 200 -+ OO0
log p(z) = log > p(h,z) —log Z(0)

do; do; Eh: P00 -« OO

YN Y)




Directed graphical models

p(z,h) = p(z | R)p(hD) | K)o p(hE=D | BE))p(RE))

dcéi logp(z) = p(l | dcéip(a?)

wo problems:
1. Summation over exponentially many states in h

2. Posterior inference, i.e. calculating p(h|x), is
intractable



Directed graphical models: new approaches

The Variational Autoencoder model:
» Kingma and Welling, Auto-Encoding Variational Bayes, International
Conference on Learning Representations (ICLR) 2014

 Rezende, Mohamed and Wierstra, Stochastic back-propagation and
variational inference in deep latent Gaussian models. ArXiv.

Use a reparametrization that allows them to train very efficiently with gradient
backpropagation



GGenerative Adversarial Networks

* General strategy: Do not write a formula for p(x), just learn to sample
directly. No intractable summations

A game between two players:
1. Discriminator D
2. Generator G
» D tries to discriminate between:
« A sample from the data distribution
* And a sample from the generator G

« @ tries to “trick” D by generating samples that are had for D to
distinguish from data



GGenerative Adversarial Networks

D tries to
output O

D tries to
output 1

Differentiable
function D

Differentiable
function D

00 --- 00

X sampled
from model

Differentiable
function G

Input noise
4




/ero-sum game

* Minimax objective function:

m&n max V(D,G) = Egprpyu(aylog D(x)| +E,op_ () log(1 — D(G(2)))]

* |n practice, to estimate G we use:

mélx 4:zmpz (2) [log D(G(Z))]

Why! Stronger gradient for G when D is very good.

Adapted from lan Goodfellow



Learning process

pp(data) Data distribution
l / Model distribution

.
[
Ld '
“\.:
)
‘e
[N

Y/

Poorly fit model

Diagram from lan Goodfellow



Learning process

pp(data) Data distribution
l / Model distribution
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Poorly fit model After updating D

Diagram from lan Goodfellow



Learning process

pp(data) Data distribution
l / Model distribution
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Poorly fit model After updating D After updating G

Diagram from lan Goodfellow



Learning process

pp(data) Data distribution
l / Model distribution
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Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

Diagram from lan Goodfellow



GANSs are both fun and useful

male -> female

Adversarial Inverse Graphics Networks, Tung et al. 2017



GANSs are both fun and useful

anybody -> Tom Cruise

N
) =
L
oy

. ‘.‘_.r:. '.'/

Adversarial Inverse Graphics Networks, Tung et al. 2017



Generative Adversarial Imitation learning

Find a policy 7Tg that makes it impossible for a discriminator network to
distinguish between trajectory chunks visited by the expert and by the learner’s
application of g

mén max V(D,G) = Egppyu(eylog D(x)| +E,p_ () log(1 — D(G(2)))]

D outputs 1 if state comes from the demo policy

min mgx *'3; [log D(S)] + K, [log(l — D(S))]
o

Reward for the policy optimization is how well | matched the demo
trajectory distribution, else, how well | confused the discriminator:
logD(s)



Generative Adversarial Imitation Learning

Stefano Ermon
Stanford University
ermon@cs.stanford.edu

NIPS 2016

Jonathan Ho
Stanford University
hoj@cs.stanford.edu

Algorithm 1 Generative adversarial imitation learning
1. Input: Expert trajectories 7 ~ mg, initial policy and discriminator parameters g, wq

2: fori=0,1,2,... do
3:  Sample trajectories 1; ~ 7y,
4:  Update the discriminator parameters from w; to w;; with the gradient

.. [Velog(Dy(s,a))] + E. [V log(l — Dy (s,))] (17)

Take a policy step from 6; to 6,1, using the TRPO rule with cost function log(D,,, ., (s, a)).
Specifically, take a KL -constrained natural gradient step with

., [Vologmo(als)Q(s,a)] — AV, H (m), (18)

where (J(5,a) = ETi log(Dy.,,(s,a)) |80 = 5,ay = @l

6: end for




Generative Adversarial Imitation learning
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