
10703	Deep	Reinforcement	Learning	

Tom Mitchell

October 22, 2018

Exploration vs. Exploitation

Reading:	Barto	&	Sutton,	Chapter	2		

Used Materials
•  Some of the material and slides for this lecture were taken from
Chapter 2 of Barto & Sutton textbook.

•  Some slides are borrowed from Ruslan Salakhutdinov and Katerina
Fragkiadaki, who in turn borrowed from Rich Sutton’s RL class and
David Silver’s Deep RL tutorial

Exploration vs. Exploitation Dilemma

‣  Online decision-making involves a fundamental choice:
-  Exploitation: Take the most rewarding action given current knowledge
-  Exploration: Take an action to gather more knowledge

‣  The best long-term strategy may involve short-term sacrifices

‣  Gather enough knowledge early to make the best long term decisions

Exploration vs. Exploitation Dilemma

‣  Restaurant Selection
-  Exploitation: Go to your favorite restaurant
-  Exploration: Try a new restaurant

‣  Oil Drilling
-  Exploitation: Drill at the best known location
-  Exploration: Drill at a new location

‣  Game Playing
-  Exploitation: Play the move you believe is best
-  Exploration: Play an experimental move

Exploration vs. Exploitation Dilemma

‣  Naive Exploration
-  Add noise to greedy policy (e.g. ε-greedy)

‣  Optimistic Initialization
-  Assume the best until proven otherwise

‣  Optimism in the Face of Uncertainty
-  Prefer actions with uncertain values

‣  Probability Matching
-  Select actions according to probability they are best

‣  Information State Search
-  Look-ahead search incorporating value of information

The Multi-Armed Bandit

‣  A multi-armed bandit is a tuple ⟨A, R⟩

‣  A is a known set of k actions (or “arms”)

‣  is an unknown probability
distribution over rewards, given actions

‣  At each step t the agent selects an action

‣  The environment generates a reward

‣  The goal is to maximize cumulative reward

‣  What is the best strategy?

Regret
‣  The action-value is the mean (i.e. expected) reward for action a,

‣  The optimal value V∗ is

‣  Maximize cumulative reward = minimize total regret

‣  The regret is the expected opportunity loss for one step

‣  The total regret is the opportunity loss summed over steps

‣  The gap ∆a is the difference in value between action a and optimal
action a∗:

Counting Regret

 ‣  The count Nt(a): the number of times that action a has been selected
prior to time t

‣  A good algorithm ensures small counts for large gaps
‣  Problem: rewards, and therefore gaps, are not known in advance!

‣  Regret is a function of gaps and the counts

Counting Regret

‣  If an algorithm forever explores uniformly it will have linear total regret
‣  If an algorithm never explores it will have linear total regret
‣  Is it possible to achieve sub-linear total regret?

Greedy Algorithm

 ‣  We consider algorithms that estimate:

‣  Estimate the value of each action by Monte-Carlo evaluation:

‣  Greedy can lock onto a suboptimal action forever

‣  ⇒ Greedy has linear (in time) total regret

‣  The greedy algorithm selects action with highest estimated value

Sample
average

‣  The ε-greedy algorithm continues to explore forever

-  With probability (1 − ε) select

-  With probability ε select a random action

ε-Greedy Algorithm

‣  ⇒ ε-greedy has linear (in time) expected total regret

‣  Constant ε ensures expected regret at each time step is:

ε-Greedy Algorithm

2.3. INCREMENTAL IMPLEMENTATION 31

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

Rn +

n�1X

i=1

Ri

!

=
1

n

Rn + (n� 1)

1

n� 1

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Average reward for
three algorithms

Non-Stationary Worlds

 ‣  What if reward function changes over time?

‣  Then we should base reward estimates on more recent experience

‣  We can up-weight influence of newer examples

influence decays
exponentially in time!

just the incremental
calculation of sample mean

‣  Starting with

‣  We can up-weight influence of newer examples

influence decays
exponentially in time!

Non-Stationary Worlds

‣  Can even make α vary with step n and action a

‣  And still assure convergence so long as

big enough to overcome
initialization and random

fluctuations

small enough to eventually
converge

ε-Greedy Algorithm

2.3. INCREMENTAL IMPLEMENTATION 31

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

Rn +

n�1X

i=1

Ri

!

=
1

n

Rn + (n� 1)

1

n� 1

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Back to stationary worlds …

Optimistic Initialization

‣  Encourages systematic exploration early on

‣  But optimistic greedy can still lock onto
a suboptimal action if rewards are stochastic

‣  Simple and practical idea: initialize Q(a) to high value

‣  Update action value by incremental Monte-Carlo evaluation

‣  Starting with N(a) > 0

just an incremental estimate
of sample mean,
including one ‘hallucinated’
initial optimistic value

Decaying εt-Greedy Algorithm

‣  Decaying εt-greedy has logarithmic asymptotic total regret

‣  Unfortunately, schedule requires advance knowledge of gaps

‣  Goal: find an algorithm with sub-linear regret for any multi-armed
bandit (without knowledge of R)

‣  Pick a decay schedule for ε1, ε2, ...

‣  Consider the following schedule Smallest non-zero gap

How does ε change as
smallest non-zero gap
shrinks?

Upper Confidence Bounds

 ‣  Estimate an upper confidence Ut(a) for each action value

‣  Such that with high probability

‣  This depends on the number of times N(a) has been selected
-  Small Nt(a) ⇒ large Ut(a) (estimated value is uncertain)
-  Large Nt(a) ⇒ small Ut(a) (estimated value is more accurate)

Estimated mean Estimated Upper
Confidence interval

‣  Select action maximizing Upper Confidence Bound (UCB)

Optimism in the Face of Uncertainty

‣  This depends on the number of times N(ak) has been selected
-  Small Nt(ak) ⇒ upper bound will be far from sample mean
-  Large Nt(ak) ⇒ upper bound will be closer to sample mean

but how can we calculate upper bound if we don’t know form of P(Q)?

Hoeffding’s Inequality

‣  We will apply Hoeffding’s Inequality to rewards of the bandit
conditioned on selecting action a

Calculating Upper Confidence Bounds

 ‣  Pick a probability p that true value exceeds UCB

‣  Now solve for Ut(a)

‣  Reduce p as we observe more rewards, e.g. p = t−c, c=4
(note: c is a hyper-parameter that trades-off explore/exploit)

‣  Ensures we select optimal action as t → ∞

UCB1 Algorithm

 ‣  This leads to the UCB1 algorithm

Bayesian Bandits

‣  Bayesian bandits exploit prior knowledge of rewards,

‣  So far we have made no assumptions about the reward distribution R
-  Except bounds on rewards

‣  Use posterior to guide exploration
-  Upper confidence bounds (Bayesian UCB)
-  Can avoid weaker, assumption free, Hoeffding bounds

‣  Better performance if prior knowledge is accurate

‣  They compute posterior distribution of rewards
-  where the history is:

Bayesian UCB Example

‣  Compute Gaussian posterior over µa and σa
2 (by Bayes law)

‣  Assume reward distribution is Gaussian,

‣  Pick action

Probability Matching

‣  Can be difficult to compute analytically.

‣  Probability matching selects action a according to probability that a is
the optimal action

‣  Probability matching is naturally optimistic in the face of uncertainty
-  Uncertain actions have higher probability of being max

Thompson Sampling

 ‣  Thompson sampling implements probability matching

‣  Use Bayes law to compute posterior distribution :
(i.e., distribution over the parameters of)

‣  Sample a reward distribution R from posterior

‣  Compute action-value function:

‣  Select action maximizing value on sample:

‣  here is the actual (unknown) distribution from which rewards are
drawn

Contextual Bandits (aka Associative Search)

‣  A contextual bandit is a tuple ⟨A, S , R⟩

‣  A is a known set of k actions (or “arms”)

‣  is an unknown distribution over
states (or “contexts”)

‣  is an unknown probability
distribution over rewards

‣  The goal is to maximize cumulative reward

‣  At each time t
-  Environment generates state
-  Agent selects action
-  Environment generates reward

Value of Information

 ‣  Exploration is useful because it gains information

‣  Information gain is higher in uncertain situations

‣  Therefore it makes sense to explore uncertain situations more

‣  If we know value of information, we can trade-off exploration and
exploitation optimally

‣  Can we quantify the value of information?
-  How much reward a decision-maker would be prepared to pay in

order to have that information, prior to making a decision
-  Long-term reward after getting information vs. immediate reward

Information State Search in MDPs

 ‣  MDPs can be augmented to include information state

‣  Now the augmented state is = ⟨s,s~⟩
-  where s is original state within MDP
-  and s~ is a statistic of the history (accumulated information)

‣  Each action a causes a transition

-  to a new state s′ with probability
-  to a new information state s~′

‣  Defines MDP in augmented information state space

Conclusion

 ‣  Have covered several principles for exploration/exploitation
-  Naive methods such as ε-greedy
-  Optimistic initialization
-  Upper confidence bounds
-  Probability matching
-  Information State Search

‣  These principles were developed in bandit setting

‣  But same principles also apply to MDP setting

Thank	you	

