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Part of the slides on path wise derivatives adapted from John Schulman



Computing Gradients of Expectations

When the variable w.r.t. which we are differentiating appears in the distribution:

Vo ‘pr(.|e)F(x) = "pr(.|9)V910gp( - |OF(X) eg. Vg[EaNﬂeR(aa s)

When the variable w.r.t. which we are differentiating appears in the expectation:
dF(x(0),z) dx
dx do

Vol o yo,nFx(0),2) = E__ y0,1y VoF(x(0), 2) = E__ y0.1)

Re-parametrization trick: For some distributions p(xI\theta) we can switch from one
gradient estimator to the other.

Why would we want to do so?



Known MDP

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

Reward and dynamics are known



Known MDP-let's make It simpler

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.




What if the policy is

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

| can compute the gradient with backpropagation.

Vop(s,a) = p,my,



deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

Likelihood ratio estimator, works for both
continuous and discrete actions

. Volog my(s, a)p(s, a)




Policles are

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

= Vlog my(s, a)p(s, a)

If 62 is constant:

ou(s;0
(a — u(s; 6)) 20
2

Vo 1Og 7T9(87 CL) =
o



Re-parametrization for




Re-parametrization for

EGtz0) = 4 , Isotropic
Var(u + zo0) = o 0= 1(s.0) + 20 0(s.0)
da B du(s, 9) do(s, 0)

- +2z0
do ge( ) 10
all,2), s
Vi, [,0 (a(o, Z),S)] = E, P 2),$) da(0,2)

a=pu(s,0)+z00(s,0)

da do
~ N (0,I) Sample estimate:
| & 1 & dp(a6,2),s) da(®,z)
V@NZ [p (a(®. Z")’S)] - NZ da do =

i=1 i=1



Re-parametrization for Gaussian

E(u +z0) = u

Var(u + 26) e ISotropic
U+ z0) = 0= u(s.0) + 2 6 o(s.0)
da B du(s, 9) do(s, 0)

- +2z0
do ge( ) 10
all,2), s
Vi, [,0 (a(o, Z),S)] = E, P 2),$) da(0,2)

a = p(0,0)+z0 o(s,0)

da do
~ N (0,I) Sample estimate:
| & 1 & dp(a6,2),s) da(®,z)
V@NZ [p (a(®. Z")’S)] - NZ da do =




Re-parametrization for Gaussian

a=pu(s,0)+z00(s,0)

~ N (0,])

Likelihood ratio grad estimator:

E, Vylog my(s, a)p(s, a)

Elu+20) = p : isotropic
Var(ﬂ + ZO-) =0 q = //l(S, 9) +70 G(S, 9)
da B du(s, 9) do(s, 0)

— = +
0" a8 TP

dp (a(0,2),s) da(é,
VH[EZ [p ((1(9, Z),S)] = [EZ ( — ) Clc(le 2)

Sample estimate:

| & 1 & dp (a(Q,Z),S) da(0,z)
Vo & [ (a6.2).5) 2 g =

general

a=u(c,0)+Lz, T=LLT

Pathwise derivative:
. dp (a(0.2),5) da(0, )
< da df




Policies are parametrized

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

. Volog my(s, a)p(s, a)




Re-parametrization for categorical distributions

Consider variable y following the K categorical distribution:
exp((log p)/T)

> g exp((logp;)/7)

Yk ~

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017



Re-parametrization trick for categorical distributions

Consider variable y following the K categorical distribution:
exp((log p)/T)

K
D i—o exp((logp;)/T)
Re-parametrization:

Yk ~

a, = argmax(logp, +€,), €, = —log(—log(U)), u ~ %][0,1]
k

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017



Re-parametrization trick for categorical distributions

Consider variable y following the K categorical distribution:
exp((log p)/T)

> g exp((logp;)/7)

Reparametrization:

7N

a, = argmax(logp, +€,), €, = —log(—log(U)), u ~ %][0,1]
k

In the forward pass you sample from the parametrized distribution
@ ~ G(logp)
In the backward pass you use the soft distribution:

da dG dp
a9 dp df

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017



Re-parametrization trick for categorical distributions

Consider variable y following the K categorical distribution:
exp((log p)/T)

K
D i—o exp((logp;)/T)
Reparametrization:

7N

a, = argmax(logp, +€,), €, = —log(—log(U)), u ~ %][0,1]
k

In the forward pass you sample from the parametrized distribution
@ ~ G(logp)
In the backward pass you use the soft distribution:

da dG dp
a9 dp df

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017



Back-propagating through discrete variables

For binary neurons:

forward pass backward pass

Straight-through sigmoidal

For general categorically distributed neurons:

forward pass backward pass

o | .l

http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html
Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017



http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html

Re-parametrized Policy Gradients

» Episodic MDP:

0

Ve

We want to compute: V,E[R;]




Re-parametrized Policy Gradients

» Episodic MDP:

0
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We want to compute: V,E[R;]

» Reparameterize: a; = 7(s:, z;; 0). z; is noise from fixed distribution.
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Re-parametrized Policy Gradients

» Episodic MDP:

e

We want to compute: V,E[R;]

» Reparameterize: a; = 7w(s;, z;; 0). z; is noise from fixed distribution.

For path wise derivative to work, we need transition dynamics and reward

function to be known.

o

6

o
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Re-parametrized Policy Gradients

S _

d day
—E[Rr| =K — K — REI[R |t
a6 1R tzdat d ;dat Rrlad g

For path wise derivative to work, we need transition dynamics and reward
function to be known, or...



Re-parametrized Policy Gradients

] _ - _
d dR+ da; d day
“R[R;]=E —E S ——E[Rr | ay] —
do [R7] Z ;dat (R | a:] 19

e dQ(sna)da] [ d '
—E |} (5t,a0) dac | _ > 5 Qse. (s, 2:0))
i | t=1 i

> Learn @4 to approximate QQ™7, and use it to compute gradient estimates.

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. |nz N/P5/2015



Stochastic Value Gradients VO

> Learn @4 to approximate QQ™7, and use it to compute gradient estimates.

» Pseudocode:

for iteration=1,2,... do
Execute policy my to collect T timesteps of data

Update 7y using g o< Vo 3., Q(st, 7(st, z¢; 6))

Update Qg using g o< Vo 3.7 (Qq(se, a:) — Q¢)?, e.g. with TD()\)
end for

What if we give up on stochastic actions?

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. |nzu N/IPS5/2015



Deep Deterministic Policy Gradients

d B dR; da,
Tk [Rr] = Z da; df

Continuous control with deep reinforcement learning, Lilicrap et al. 2016



Deep Deterministic Policy Gradients

Ry

This expectation refers to the dynamics after time t
d '~ dRy da,

. _
d E da;
YRR =F _EIST SRR dat
1™ IRl da, d0 Z}m [Rr 2] -5

| t=1

Continuous control with deep reinforcement learning, Lilicarp et al. 2016



Deep Deterministic Policy Gradients

Ry

T

d dRT dat dat
—E|Rs| = =K —E|R —_
qg™ IRl = Z da, d6 Zdat [Rr | a:] 3
T
dQ(St, 3t) dat
— K
; da; do

Continuous control with deep reinforcement learning, Lilicrap et al. 2016



Deep Deterministic Policy Gradients

Ry

T

d dRT dat dat
L RIR] = § : _ § j— il
o Rl = da, a0 | ~© datE[RT|at]
- _
dQ(s:, at) dat d
— K — K - .
; da, df ; ag Lt m(5¢30))

Continuous control with deep reinforcement learning, Lilicrap et al. 2016



Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#%) and actor y(s|6*) with weights 69 and 6+,
Initialize target network @’ and x’ with weights 69" «+ 69, 9*" «+ g*
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action a; = u(s¢|6*) + N} according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1
Store transition (sy, a;, 74, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;, 7, Si+1) from R
Set y; = r; + Q' (sit1, 1/ (si+1]0)|09")
Update critic by minimizing the loss: L = + >_.(yi — Q(si, a;|09))?
Update the actor policy using the sampled policy gradient:

Si

1
Vound = ]_V ;an(SaaloQ)|s=si,a=u(si)v9”:u’(3|9“)

Update the target networks:
09 « 769 + (1 —7)8°
O T + (1 — T)6

end for
end for




Deep Deterministic Policy Gradients

a = 1(0)

Vigud = ]Es,NpB [VO#Q(S'.a’lgq)ls:Sg,a.zu(S¢|0“)]
= Eg,~nps [an(Saa|9Q)Is=8z,azu(Sz)vﬂpﬂ'(slgu)|S=S¢]

We are following a stochastic behavior policy to collect data.
Deep Q learning for contours actions-> DDPG



Stochastic Value Gradients VO

a = pu(s;0) + zo(s;0)

(where are the other versions? We will see them in the model based RL lecture)



End-to-end model based RL

Re-parametrization trick for both policies and dynamics




Deep Deterministic Policy Gradients

Figure 1: Example screenshots of a sample of environments we attempt to solve with DDPG. In
order from the left: the cartpole swing-up task, a reaching task, a gasp and move task, a puck-hitting
task, a monoped balancing task, two locomotion tasks and Torcs (driving simulator). We tackle
all tasks using both low-dimensional feature vector and high-dimensional pixel inputs. Detailed
descriptions of the environments are provided in the supplementary. Movies of some of the learned
policies are available at https://goo.gl/J4PIAz.

https://www.youtube.com/watch?v=tdBIgkC1wWM&feature=youtu.be



Deep Deterministic Policy Gradients

Cart Pendulum Swing-up Cartpole Swing-up Fixed Reacher Monoped Balancing
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Puck Shooting Cheetah
P 1r
©
=
& 0 AWM MAAAANA
T
1))
N
©
-
O
= 0 1

Million Steps

Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.

State representation input can be pixels or robotic configuration and target locations

https://www.youtube.com/watch?v=tdBIgkC1wWM&feature=youtu.be



Model Free Methods - Comparison

Task Random REINFORCE TNPG RWR REPS TRPO CEM CMA-ES DDPG
Cart-Pole Balancing 77.1+£0.0 4693.74+ 14.0 39864 4 7489 4861.5 4+ 123 565.6 +137.6 4869.8 4+ 37.6 4815.44+ 4.8 2440.44+568.3 46344 4+ B87.8
Inverted Pendulum?* —153.440.2 13.44 18.0 209.7 + 555 84. 74+ 13.8 —113.3+ 4.6 2472 -+ 7e6.1 38.24+ 25.7 —40.14+ 5.7 400 +244.6
Mountain Car —415.440.0 —67.14+ 1.0 -66.5 + 4.5 —79.44+ 1.1 —-275.61+166.3 -61.7 + 09 —66.0+ 2.4 —85.0x 7.7 —288.44+170.3
Acrobot —1904.54+1.0 —508.1+ 91.0 —395.8+121.2 —352.74+ 35.9 —1001.54+ 10.8 —326.0+ 24.4 —436.8+ 14.7 —T785.6+ 13.1 -223.6 + 5.8
Double Inverted Pendulum®*® 149.74+ 0.1 4116.5+ 65.2 44554 + 37.6 3614.8 +-368.1 446.74+114.8 44124 + 504 2566.24+178.9 1576.14+ 51.3 2863.44154.0
Swimmer#* —1.74+0.1 92.34+ 0.1 96.0 4+ 0.2 60.7+ 5.5 3.84 3.3 96.0 4+ 0.2 68.8+ 2.4 64.9+ 1.4 85.8 + 1.8
Hopper 8.44+0.0 714.0+ 29.3 1155.1 4+ 579 5563.2+ T71.0 86.7+ 17.6 1183.3 -+ 150.0 63.1+ 7.8 20.3+ 14.3 267.1 + 43.5
2D Walker —1.74+0.0 506.5+ TR.8 1382.6 4+ 108.2 136.0+ 15.9 —37.04+ 38.1 1353.8 1+ 85.0 84.54+ 19.2 T7.14+ 24.3 318.44181.6
Half-Cheetah —900.84+0.3 1183.14+ 69.2 17295 4+ 184.6 376.1 4+ 28.2 34.54+ 38.0 1914.0 + 120.1 330.44-274.8 441.34+107.6 2148.6 4+ T02.7
Ant* 13.440.7 548.3+ 55.5 706.0 4 127.7 37.6+ 3.1 39.04+ 9.8 7302 -+ 613 49.24+ 5.9 17.8+ 15.5 326.2 + 20.8
Simple Humanoid 41.54+0.2 128.1 4+ 34.0 255.0 4+ 245 93.34+ 17.4 28.3+ 4.7 2697 -+ 403 60.6 - 12.9 28. 7T+ 3.9 99.4+ 28.1
Full Humanoid 13.240.1 262.2+ 10.5 2884 4+ 252 46.7T+ 5.6 41.74+ 6.1 287.0 + 234 36.9+ 2.9 N/A + N/A 119.04+ 31.2
Cart-Pole Balancing (LS)* 77.1+0.0 420.94265.5 9451 L+ 278 68.94+ 1.5 898.14 22.1 960.2 -+ 46.0 227.04 223.0 68.0x 1.6

Inverted Pendulum (LS) —122.140.1 —13.44+ 3.2 0.7 + 6.1 —107.44+ 0.2 —87.24+ 8.0 4.5 + 4.1 —81.2+ 33.2 —62.4+ 3.4

Mountain Car (LS) —83.04+0.0 —81.24+ 0.6 657 + 9.0 —81.74+ 0.1 —82.6+ 0.4 642 + 95 689 + 13 -73.2 <+ 0.6

Acrobot (LS)* —303.240.0 —128.94+ 11.86 846 <+ 29 —235.94+ 5.3 —-379.5+ 1.4 -83.3 4+ 99 —149.54+ 15.3 —159.94+ 7.5

Cart-Pole Balancing (NO)* 101.440.1 616.04+210.8 9163 L+ 23.0 93.84+ 1.2 9964+ T.2 606.24122.2 181.4+ 32.1 104.4+ 16.0

Inverted Pendulum (NQO) —122.240.1 6.5+ 1.1 115 + 0.5 —110.04+ 1.4 —-119.3+ 4.2 104 + 2.2 —55.6+ 16.7 —80.3+ 2.8

Mountain Car (NO) —83.04+0.0 —T74.7T4+ 7.8 645 4+ 8.6 —81.74+ 0.1 —82.94+ 0.1 -60.2 4+ 2.0 —67.4+ 1.4 —73.5+ 0.5

Acrobot (NO)* —393.54+0.0 -186.7 + 31.3 -164.5 4+ 134 —233.14+ 0.4 —258.5+ 14.0 -1496 + 8.6 —213.44+ 6.3 —236.6%+ 6.2

Cart-Pole Balancing (SI)* 76.3+0.1 431.71+274.1 9805 + 7.3 69.04+ 2.8 702.44+196.4 9803 + 5.1 746.6 + 93.2 7T1.6+ 2.9

Inverted Pendulum (SI) —121.840.2 —5.34+ 5.6 148 + 1.7 —108.7+ 4.7 —92.84+ 23.9 141 <+ 09 —51.8+ 10.6 —63.14+ 4.8

Mountain Car (SI) —82.74+0.0 —63.94+ 0.2 618 4+ 04 —81.44 0.1 —80.74+ 2.3 -61.6 + 04 —63.9+ 1.0 —66.9+ 0.6

Acrobot (SI)* —387.84+1.0 -169.1 -+ 323 -156.6 -+ 389 —233.24+ 2.6 —-216.14& T.7 -1709 L+ 403 —250.24+ 13.7 —245.04L+ 5.5

Swimmer + Gathering 0.0+0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
Ant + Gathering —5.84+5.0 —0.14+ 0.1 —0.44+ 0.1 —5.54+ 0.5 —6.74+ 0.7 —0.44+ 0.0 —4.74+ 0.7 N/A + N/A —0.34+ 0.3
Swimmer + Maze 0.04+£0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.04+& 0.0 0.0+ 0.0 0.04+& 0.0 0.0+ 0.0 0.0+ 0.0
Ant + Maze 0.0+0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 N/A + N/A 0.0+ 0.0

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control"



Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Multigoal RL

Katerina Fragkiadaki




So far we train one policy/value function per task, e.g., win the game of Tetris, win the
game of Go, reach to a *particular” location, put the green cube inside the gray bucket,
etc.




Universal value function Approximators

V(is;0) = V(s,g;0)

=

All the methods we have learnt so far can be used.

7(s; 60)

n(s, g;0)

At the beginning of an episode, we sample not only a start state but also
a goal g, which stays constant throughout the episode

The experience tuples should contain the goal.

(s,a,r,s’) = (S, g,a,r, s’)

Universal Value Function Approximators, Schaul et al.



Universal value function Approximators

V(s,0) = Vi(s,0,8)

n(s;0) = 7x(s,g;0)

What should be my goal representation?

(not an easy question)

- Manual: 3d centroids of objects, robot joint angles and velocities, 3d
location of the gripper, etc.

- Learnt: We supply a target image as the goal, and the method learns to
map it to an embedding vector, e.g., asymmetric actor-critic, Lerrel et al.



Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

Main idea: use failed executions under one goal g, as successful executions
under an alternative goal g’ (which is where we ended spat the end of the

episode)

/ ‘ Goal g’
No reward :-(
O reward :-)
Goal g Our reacher at the end of the episode Our reacher at the end of the episode

(s, g,a,0,5) (S, g, a,l,s’)



Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

Main idea: use failed executions under one goal g, as successful executions
under an alternative goal g’ (which is where we ended spat the end of the
episode)




HINAsIgnt Experience Replay

Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, >e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g S(sg,...,s7) =m(sr)
e areward functionr: S x A x G — R. >e.g. r(s,a,g9) = —[fy(s) =0]
Initialize A > e.g. initialize neural networks

Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sy.
fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:
a; < mp(5¢]|9) > || denotes concatenation
Execute the action a; and observe a new state s; 1
end for
fort = 0,7 —1do
re = 1(S¢,a¢, g)

Store the transition (s¢||g, a¢, r¢, Si+1/lg) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for ¢’ € G do
!/ .__ /
r' = 1r(s¢,at,9)
Store the transition (s;||g’, a¢, v, s¢v1l|g’) in R > HER
end for \
end for Usually as additional goal
fort = 1, N do we pick the goal that this
Sample a minibatch B from the replay buffer R episode achieved, and the
Perform one step of optimization using A and minibatch B reward becomes non zero

end for
end for




HINAsIgnt Experience Replay

Reward shaping: instead of using binary rewards, use continuous rewards, e.g., by
considering Euclidean distances from goal configuration

HER does not require reward shaping! :-)

The burden goes from designing the reward to designing the goal encoding.. :-(



HINAsIgnt Experience Replay

- = DDPG - DDPG+count-based exploration — DDPG+HER - DDPG+HER (version from Sec. 4.5)
pushing sliding pick-and-place
100% 100% 100%
80% 80% 80%
2
C 60% 60% 60%
7
@
S 40% 40% 40%
7
20% 20% 20%
0% ——— 0% 0%
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

epoch number (every epoch = 800 episodes = 800x50 timesteps)



