
Pathwise derivatives, DDPG, 
Multigoal RL

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science



Part of the slides on path wise derivatives adapted from John Schulman 



Computing Gradients of Expectations

∇θ𝔼a∼πθ
R(a, s)∇θ𝔼x∼p(⋅|θ)F(x) = 𝔼x∼p(⋅|θ) ∇θlog p( ⋅ |θ)F(x)

When the variable w.r.t. which we are differentiating appears in the distribution:

∇θ𝔼z∼𝒩(0,1)F(x(θ), z) = 𝔼z∼𝒩(0,1) ∇θF(x(θ), z) = 𝔼z∼𝒩(0,1)
dF(x(θ), z)

dx
dx
dθ

When the variable w.r.t. which we are differentiating appears in the expectation:

e.g.

likelihood ratio gradient estimator

pathwise derivative

Re-parametrization trick: For some distributions p(x|\theta) we can switch from one 
gradient estimator to the other.
Why would we want to do so? 



Known MDP

...T(s, a)

πθ(s)

ρ(s, a)

πθ(s)

s0 s1

a0 a1

T(s, a)

ρ(s, a)

r0 r1

θ Reward and dynamics are known

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 



Known MDP-let’s make it simpler

πθ(s)

ρ(s, a)

s0

a0

r0

θ
I want to learn \theta to maximize the reward 
obtained.

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 



What if the policy is deterministic?

πθ(s)

ρ(s, a)

s0

a0

r0

θ
I want to learn \theta to maximize the reward 
obtained.

a = πθ(s)
I can compute the gradient with backpropagation.

∇θ ρ(s, a) = ρaπθθ

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 



What if the policy is stochastic?

πθ(s, a)

ρ(s, a)

s0

a0

r0

θ

I want to learn \theta to maximize the reward 
obtained.

𝔼a ∇θ log πθ(s, a)ρ(s, a)

Likelihood ratio estimator, works for both 
continuous and discrete actions

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 



Policies are parametrized Gaussians

πθ(s)

ρ(s, a)

s0

a0

r0

θ
I want to learn \theta to maximize the reward 
obtained.

µ✓(s) �✓(s)

a ∼ 𝒩(μ(s, θ), Σ(s, θ))

𝔼a ∇θ log πθ(s, a)ρ(s, a)

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

r✓ log ⇡✓(s, a) =
(a� µ(s; ✓))@µ(s;✓)@✓

�2

If      is constant:σ2



Re-parametrization for Gaussian

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z ∼ 𝒩(0,I)z

a0 a = μ(s, θ) + z ⊙ σ(s, θ)



Re-parametrization for Gaussian

isotropic

da
dθ

=
dμ(s, θ)

dθ
+ z ⊙

dσ(s, θ)
dθ

∇θ𝔼z [ρ (a(θ, z), s)] = 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z ∼ 𝒩(0,I)z

a0

𝔼(μ + zσ) = μ
Var(μ + zσ) = σ2

Sample estimate:

∇θ
1
N

N

∑
i=1

[ρ (a(θ, zi), s)] =
1
N

N

∑
i=1

dρ (a(θ, z), s)
da

da(θ, z)
dθ

|z=zi

a = μ(s, θ) + z ⊙ σ(s, θ)

a = μ(s, θ) + z ⊙ σ(s, θ)



Re-parametrization for Gaussian

isotropic

da
dθ

=
dμ(s, θ)

dθ
+ z ⊙

dσ(s, θ)
dθ

∇θ𝔼z [ρ (a(θ, z), s)] = 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z ∼ 𝒩(0,I)z

a0 a = μ(σ, θ) + z ⊙ σ(s, θ)

𝔼(μ + zσ) = μ
Var(μ + zσ) = σ2

Sample estimate:

∇θ
1
N

N

∑
i=1

[ρ (a(θ, zi), s)] =
1
N

N

∑
i=1

dρ (a(θ, z), s)
da

da(θ, z)
dθ

|z=zi

a = μ(s, θ) + z ⊙ σ(s, θ)



Re-parametrization for Gaussian

a = μ(s, θ) + z ⊙ σ(s, θ)
isotropic

a = μ(σ, θ) + Lz, Σ = LL⊤
general

da
dθ

=
dμ(s, θ)

dθ
+ z ⊙

dσ(s, θ)
dθ

∇θ𝔼z [ρ (a(θ, z), s)] = 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z ∼ 𝒩(0,I)z

a0 a = μ(s, θ) + z ⊙ σ(s, θ)

The pathwise 
derivative uses the 

derivative of the 
reward w.r.t. the action!

𝔼(μ + zσ) = μ
Var(μ + zσ) = σ2

Sample estimate:

∇θ
1
N

N

∑
i=1

[ρ (a(θ, zi), s)] =
1
N

N

∑
i=1

dρ (a(θ, z), s)
da

da(θ, z)
dθ

|z=zi

𝔼a ∇θ log πθ(s, a)ρ(s, a) 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ

Likelihood ratio grad estimator:
Pathwise derivative:



Policies are parametrized Categorical distr

πθ(s, a)

ρ(s, a)

s0

a0

r0

θ
I want to learn \theta to maximize the reward 
obtained.

𝔼a ∇θ log πθ(s, a)ρ(s, a)

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 



Re-parametrization for categorical distributions

Consider variable y following the K categorical distribution:

yk ⇠ exp((log pk)/⌧PK
j=0 exp((log pj)/⌧)

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017



Re-parametrization trick for categorical distributions

Re-parametrization:

Consider variable y following the K categorical distribution:

yk ⇠ exp((log pk)/⌧PK
j=0 exp((log pj)/⌧)

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

ak = arg max
k

(log pk + ϵk), ϵk = − log(−log(U)), u ∼ 𝒰[0,1]



Re-parametrization trick for categorical distributions

Reparametrization:

Consider variable y following the K categorical distribution:

In the forward pass you sample from the parametrized distribution

In the backward pass you use the soft distribution: 

yk ⇠ exp((log pk)/⌧PK
j=0 exp((log pj)/⌧)

dc

d✓
=

dG

dp

dp

d✓

c ⇠ G(log p)

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

ak

ak

ak

da
dθ

ak = arg max
k

(log pk + ϵk), ϵk = − log(−log(U)), u ∼ 𝒰[0,1]



Re-parametrization trick for categorical distributions

Reparametrization:

Consider variable y following the K categorical distribution:

In the forward pass you sample from the parametrized distribution

In the backward pass you use the soft distribution: 

yk ⇠ exp((log pk)/⌧PK
j=0 exp((log pj)/⌧)

dc

d✓
=

dG

dp

dp

d✓

c ⇠ G(log p)

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

ak

ak

da
dθ

ak = arg max
k

(log pk + ϵk), ϵk = − log(−log(U)), u ∼ 𝒰[0,1]



Back-propagating through discrete variables

For binary neurons:

forward pass backward pass

Straight-through sigmoidal

http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html

For general categorically distributed neurons:

forward pass backward pass

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html


Re-parametrized Policy GradientsDeriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

∇θ𝔼[RT]We want to compute:



Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

∇θ𝔼[RT]We want to compute:

Re-parametrized Policy Gradients



Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

Re-parametrized Policy GradientsDeriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

∇θ𝔼[RT]We want to compute:

For path wise derivative to work, we need transition dynamics and reward 
function to be known.



Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Re-parametrized Policy Gradients

For path wise derivative to work, we need transition dynamics and reward 
function to be known, or… 



Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Re-parametrized Policy Gradients

SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015



SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

Stochastic Value Gradients V0
SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

What if we give up on stochastic actions?



Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients



Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Continuous control with deep reinforcement learning, Lilicarp et al. 2016

This expectation refers to the dynamics after time t

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients



Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

\pi(s_t;\theta)

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients



Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

⇡(st; ✓))

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT ] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at ]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients



Deep Deterministic Policy Gradients



s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

a = µ(✓)

Deep Deterministic Policy Gradients

We are following a stochastic behavior policy to collect data.
Deep Q learning for contours actions-> DDPG 



s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

z

z ⇠ N (0, 1)
a = µ(s; ✓) + z�(s; ✓)

Stochastic Value Gradients V0

(where are the other versions? We will see them in the model based RL lecture)



...

r0 r1

s1s0

a0 a1

sT

r = R(a, s) r = R(a, s)

a = ⇡(s; z; ✓) a = ⇡(s; z; ✓)

s0 = f̂(s, a; ⇠;�) s0 = f̂(s, a; ⇠;�)

s0 = f̂(s, a; ⇠;�)

a = ⇡(s; z; ✓)a = ⇡(s; z; ✓)

s0 = f̂(s, a; ⇠;�)

End-to-end model based RL
Re-parametrization trick for both policies and dynamics 

SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015



https://www.youtube.com/watch?v=tJBIqkC1wWM&feature=youtu.be

Deep Deterministic Policy Gradients



https://www.youtube.com/watch?v=tJBIqkC1wWM&feature=youtu.be

Deep Deterministic Policy Gradients

State representation input can be pixels or robotic configuration and target locations



Policy Gradient Methods: Comparison

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In: ICML (2016)

Model Free Methods - Comparison
Policy Gradient Methods: Comparison

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In: ICML (2016)



Multigoal RL

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science



So far we train one policy/value function per task, e.g., win the game of Tetris, win the 
game of Go, reach to a *particular* location, put the green cube inside the gray bucket, 

etc. 



Universal value function Approximators

Universal Value Function Approximators, Schaul et al.

V(s; θ) V(s, g; θ)

All the methods we have learnt so far can be used.
At the beginning of an episode, we sample not only a start state but also 
a goal g, which stays constant throughout the episode
The experience tuples should contain the goal.

π(s; θ) π(s, g; θ)

(s, a, r, s′�) (s, g, a, r, s′�)



Universal value function Approximators

V(s, θ) V(s, θ, g)

What should be my goal representation?
(not an easy question)
• Manual: 3d centroids of objects, robot joint angles and velocities, 3d 

location of the gripper, etc.  
• Learnt: We supply a target image as the goal, and the method learns to 

map it to an embedding vector, e.g., asymmetric actor-critic, Lerrel et al.

π(s; θ) π(s, g; θ)



Hindsight Experience Replay

Main idea: use failed executions under one goal g, as successful executions 
under an alternative goal g’ (which is where we ended spat the end of the 
episode)

Goal g Our reacher at the end of the episode

No reward :-(

(s, g, a,0,s′�)

Goal g’

Our reacher at the end of the episode

reward :-)

(s, g′�, a,1,s′�)



Hindsight Experience Replay

Main idea: use failed executions under one goal g, as successful executions 
under an alternative goal g’ (which is where we ended spat the end of the 
episode)



Hindsight Experience Replay

Usually as additional goal 
we pick the goal that this 

episode achieved, and the 
reward becomes non zero



Hindsight Experience Replay

HER does not require reward shaping! :-)

Reward shaping: instead of using binary rewards, use continuous rewards, e.g., by 
considering Euclidean distances from goal configuration

The burden goes from designing the reward to designing the goal encoding.. :-(



Hindsight Experience Replay


