Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Pathwise derivatives, DDPG,
Multigoal RL

Katerina Fragkiadaki

Part of the slides on path wise derivatives adapted from John Schulman

Computing Gradients of Expectations

When the variable w.r.t. which we are differentiating appears in the distribution:

Vo ‘pr(.|e)F(x) = "pr(.|9)V910gp(- |OF(X) eg. Vg[EaNﬂeR(aa s)

When the variable w.r.t. which we are differentiating appears in the expectation:
dF(x(0),z) dx
dx do

Vol o yo,nFx(0),2) = E__ y0,1y VoF(x(0), 2) = E__ y0.1)

Re-parametrization trick: For some distributions p(xI\theta) we can switch from one
gradient estimator to the other.

Why would we want to do so?

Known MDP

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

Reward and dynamics are known

Known MDP-let's make It simpler

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

What if the policy is

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

| can compute the gradient with backpropagation.

Vop(s,a) = p,my,

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

Likelihood ratio estimator, works for both
continuous and discrete actions

. Volog my(s, a)p(s, a)

Policles are

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

= Vlog my(s, a)p(s, a)

If 62 is constant:

ou(s;0
(a — u(s; 6)) 20
2

Vo 1Og 7T9(87 CL) =
o

Re-parametrization for

Re-parametrization for

EGtz0) = 4 , Isotropic
Var(u + zo0) = o 0= 1(s.0) + 20 0(s.0)
da B du(s, 9) do(s, 0)

- +2z0
do ge() 10
all,2), s
Vi, [,0 (a(o, Z),S)] = E, P 2),$) da(0,2)

a=pu(s,0)+z00(s,0)

da do
~ N (0,I) Sample estimate:
| & 1 & dp(a6,2),s) da(®,z)
V@NZ [p (a(®. Z")’S)] - NZ da do =

i=1 i=1

Re-parametrization for Gaussian

E(u +z0) = u

Var(u + 26) e ISotropic
U+ z0) = 0= u(s.0) + 2 6 o(s.0)
da B du(s, 9) do(s, 0)

- +2z0
do ge() 10
all,2), s
Vi, [,0 (a(o, Z),S)] = E, P 2),$) da(0,2)

a = p(0,0)+z0 o(s,0)

da do
~ N (0,I) Sample estimate:
| & 1 & dp(a6,2),s) da(®,z)
V@NZ [p (a(®. Z")’S)] - NZ da do =

Re-parametrization for Gaussian

a=pu(s,0)+z00(s,0)

~ N (0,])

Likelihood ratio grad estimator:

E, Vylog my(s, a)p(s, a)

Elu+20) = p : isotropic
Var(ﬂ + ZO-) =0 q = //l(S, 9) +70 G(S, 9)
da B du(s, 9) do(s, 0)

— = +
0" a8 TP

dp (a(0,2),s) da(é,
VH[EZ [p ((1(9, Z),S)] = [EZ (—) Clc(le 2)

Sample estimate:

| & 1 & dp (a(Q,Z),S) da(0,z)
Vo & [(a6.2).5) 2 g =

general

a=u(c,0)+Lz, T=LLT

Pathwise derivative:
. dp (a(0.2),5) da(0,)
< da df

Policies are parametrized

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

. Volog my(s, a)p(s, a)

Re-parametrization for categorical distributions

Consider variable y following the K categorical distribution:
exp((log p)/T)

> g exp((logp;)/7)

Yk ~

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

Re-parametrization trick for categorical distributions

Consider variable y following the K categorical distribution:
exp((log p)/T)

K
D i—o exp((logp;)/T)
Re-parametrization:

Yk ~

a, = argmax(logp, +€,), €, = —log(—log(U)), u ~ %][0,1]
k

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

Re-parametrization trick for categorical distributions

Consider variable y following the K categorical distribution:
exp((log p)/T)

> g exp((logp;)/7)

Reparametrization:

7N

a, = argmax(logp, +€,), €, = —log(—log(U)), u ~ %][0,1]
k

In the forward pass you sample from the parametrized distribution
@ ~ G(logp)
In the backward pass you use the soft distribution:

da dG dp
a9 dp df

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

Re-parametrization trick for categorical distributions

Consider variable y following the K categorical distribution:
exp((log p)/T)

K
D i—o exp((logp;)/T)
Reparametrization:

7N

a, = argmax(logp, +€,), €, = —log(—log(U)), u ~ %][0,1]
k

In the forward pass you sample from the parametrized distribution
@ ~ G(logp)
In the backward pass you use the soft distribution:

da dG dp
a9 dp df

Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

Back-propagating through discrete variables

For binary neurons:

forward pass backward pass

Straight-through sigmoidal

For general categorically distributed neurons:

forward pass backward pass

o | .l

http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html
Categorical reparametrization with Gumbel-Softmax, Sang et al. 2017

http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html

Re-parametrized Policy Gradients

» Episodic MDP:

0

Ve

We want to compute: V,E[R;]

Re-parametrized Policy Gradients

» Episodic MDP:

0
(50 A5y Sor)
ﬁ PR
(af () T (en)
We want to compute: V,E[R;]

» Reparameterize: a; = 7(s:, z;; 0). z; is noise from fixed distribution.

£ N S

Re-parametrized Policy Gradients

» Episodic MDP:

e

We want to compute: V,E[R;]

» Reparameterize: a; = 7w(s;, z;; 0). z; is noise from fixed distribution.

For path wise derivative to work, we need transition dynamics and reward

function to be known.

o

6

o

5o .

e

®

Re-parametrized Policy Gradients

S _

d day
—E[Rr| =K — K — REI[R |t
a6 1R tzdat d ;dat Rrlad g

For path wise derivative to work, we need transition dynamics and reward
function to be known, or...

Re-parametrized Policy Gradients

] _ - _
d dR+ da; d day
“R[R;]=E —E S ——E[Rr | ay] —
do [R7] Z ;dat (R | a:] 19

e dQ(sna)da] [d '
—E |} (5t,a0) dac | _ > 5 Qse. (s, 2:0))
i | t=1 i

> Learn @4 to approximate QQ™7, and use it to compute gradient estimates.

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. |nz N/P5/2015

Stochastic Value Gradients VO

> Learn @4 to approximate QQ™7, and use it to compute gradient estimates.

» Pseudocode:

for iteration=1,2,... do
Execute policy my to collect T timesteps of data

Update 7y using g o< Vo 3., Q(st, 7(st, z¢; 6))

Update Qg using g o< Vo 3.7 (Qq(se, a:) — Q¢)?, e.g. with TD()\)
end for

What if we give up on stochastic actions?

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. |nzu N/IPS5/2015

Deep Deterministic Policy Gradients

d B dR; da,
Tk [Rr] = Z da; df

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deep Deterministic Policy Gradients

Ry

This expectation refers to the dynamics after time t
d '~ dRy da,

. _
d E da;
YRR =F _EIST SRR dat
1™ IRl da, d0 Z}m [Rr 2] -5

| t=1

Continuous control with deep reinforcement learning, Lilicarp et al. 2016

Deep Deterministic Policy Gradients

Ry

T

d dRT dat dat
—E|Rs| = =K —E|R —_
qg™ IRl = Z da, d6 Zdat [Rr | a:] 3
T
dQ(St, 3t) dat
— K
; da; do

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deep Deterministic Policy Gradients

Ry

T

d dRT dat dat
L RIR] = § : _ § j— il
o Rl = da, a0 | ~© datE[RT|at]
- _
dQ(s:, at) dat d
— K — K - .
; da, df ; ag Lt m(5¢30))

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#%) and actor y(s|6*) with weights 69 and 6+,
Initialize target network @’ and x’ with weights 69" «+ 69, 9*" «+ g*
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action a; = u(s¢|6*) + N} according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1
Store transition (sy, a;, 74, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;, 7, Si+1) from R
Set y; = r; + Q' (sit1, 1/ (si+1]0)|09")
Update critic by minimizing the loss: L = + >_.(yi — Q(si, a;|09))?
Update the actor policy using the sampled policy gradient:

Si

1
Vound =]_V ;an(SaaloQ)|s=si,a=u(si)v9”:u’(3|9“)

Update the target networks:
09 « 769 + (1 —7)8°
O T + (1 — T)6

end for
end for

Deep Deterministic Policy Gradients

a = 1(0)

Vigud =]Es,NpB [VO#Q(S'.a’lgq)ls:Sg,a.zu(S¢|0“)]
= Eg,~nps [an(Saa|9Q)Is=8z,azu(Sz)vﬂpﬂ'(slgu)|S=S¢]

We are following a stochastic behavior policy to collect data.
Deep Q learning for contours actions-> DDPG

Stochastic Value Gradients VO

a = pu(s;0) + zo(s;0)

(where are the other versions? We will see them in the model based RL lecture)

End-to-end model based RL

Re-parametrization trick for both policies and dynamics

Deep Deterministic Policy Gradients

Figure 1: Example screenshots of a sample of environments we attempt to solve with DDPG. In
order from the left: the cartpole swing-up task, a reaching task, a gasp and move task, a puck-hitting
task, a monoped balancing task, two locomotion tasks and Torcs (driving simulator). We tackle
all tasks using both low-dimensional feature vector and high-dimensional pixel inputs. Detailed
descriptions of the environments are provided in the supplementary. Movies of some of the learned
policies are available at https://goo.gl/J4PIAz.

https://www.youtube.com/watch?v=tdBIgkC1wWM&feature=youtu.be

Deep Deterministic Policy Gradients

Cart Pendulum Swing-up Cartpole Swing-up Fixed Reacher Monoped Balancing

-~V

Puck Shooting Cheetah
P 1r
©
=
& 0 AWM MAAAANA
T
1))
N
©
-
O
= 0 1

Million Steps

Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.

State representation input can be pixels or robotic configuration and target locations

https://www.youtube.com/watch?v=tdBIgkC1wWM&feature=youtu.be

Model Free Methods - Comparison

Task Random REINFORCE TNPG RWR REPS TRPO CEM CMA-ES DDPG
Cart-Pole Balancing 77.1+£0.0 4693.74+ 14.0 39864 4 7489 4861.5 4+ 123 565.6 +137.6 4869.8 4+ 37.6 4815.44+ 4.8 2440.44+568.3 46344 4+ B87.8
Inverted Pendulum?* —153.440.2 13.44 18.0 209.7 + 555 84. 74+ 13.8 —113.3+ 4.6 2472 -+ 7e6.1 38.24+ 25.7 —40.14+ 5.7 400 +244.6
Mountain Car —415.440.0 —67.14+ 1.0 -66.5 + 4.5 —79.44+ 1.1 —-275.61+166.3 -61.7 + 09 —66.0+ 2.4 —85.0x 7.7 —288.44+170.3
Acrobot —1904.54+1.0 —508.1+ 91.0 —395.8+121.2 —352.74+ 35.9 —1001.54+ 10.8 —326.0+ 24.4 —436.8+ 14.7 —T785.6+ 13.1 -223.6 + 5.8
Double Inverted Pendulum®*® 149.74+ 0.1 4116.5+ 65.2 44554 + 37.6 3614.8 +-368.1 446.74+114.8 44124 + 504 2566.24+178.9 1576.14+ 51.3 2863.44154.0
Swimmer#* —1.74+0.1 92.34+ 0.1 96.0 4+ 0.2 60.7+ 5.5 3.84 3.3 96.0 4+ 0.2 68.8+ 2.4 64.9+ 1.4 85.8 + 1.8
Hopper 8.44+0.0 714.0+ 29.3 1155.1 4+ 579 5563.2+ T71.0 86.7+ 17.6 1183.3 -+ 150.0 63.1+ 7.8 20.3+ 14.3 267.1 + 43.5
2D Walker —1.74+0.0 506.5+ TR.8 1382.6 4+ 108.2 136.0+ 15.9 —37.04+ 38.1 1353.8 1+ 85.0 84.54+ 19.2 T7.14+ 24.3 318.44181.6
Half-Cheetah —900.84+0.3 1183.14+ 69.2 17295 4+ 184.6 376.1 4+ 28.2 34.54+ 38.0 1914.0 + 120.1 330.44-274.8 441.34+107.6 2148.6 4+ T02.7
Ant* 13.440.7 548.3+ 55.5 706.0 4 127.7 37.6+ 3.1 39.04+ 9.8 7302 -+ 613 49.24+ 5.9 17.8+ 15.5 326.2 + 20.8
Simple Humanoid 41.54+0.2 128.1 4+ 34.0 255.0 4+ 245 93.34+ 17.4 28.3+ 4.7 2697 -+ 403 60.6 - 12.9 28. 7T+ 3.9 99.4+ 28.1
Full Humanoid 13.240.1 262.2+ 10.5 2884 4+ 252 46.7T+ 5.6 41.74+ 6.1 287.0 + 234 36.9+ 2.9 N/A + N/A 119.04+ 31.2
Cart-Pole Balancing (LS)* 77.1+0.0 420.94265.5 9451 L+ 278 68.94+ 1.5 898.14 22.1 960.2 -+ 46.0 227.04 223.0 68.0x 1.6

Inverted Pendulum (LS) —122.140.1 —13.44+ 3.2 0.7 + 6.1 —107.44+ 0.2 —87.24+ 8.0 4.5 + 4.1 —81.2+ 33.2 —62.4+ 3.4

Mountain Car (LS) —83.04+0.0 —81.24+ 0.6 657 + 9.0 —81.74+ 0.1 —82.6+ 0.4 642 + 95 689 + 13 -73.2 <+ 0.6

Acrobot (LS)* —303.240.0 —128.94+ 11.86 846 <+ 29 —235.94+ 5.3 —-379.5+ 1.4 -83.3 4+ 99 —149.54+ 15.3 —159.94+ 7.5

Cart-Pole Balancing (NO)* 101.440.1 616.04+210.8 9163 L+ 23.0 93.84+ 1.2 9964+ T.2 606.24122.2 181.4+ 32.1 104.4+ 16.0

Inverted Pendulum (NQO) —122.240.1 6.5+ 1.1 115 + 0.5 —110.04+ 1.4 —-119.3+ 4.2 104 + 2.2 —55.6+ 16.7 —80.3+ 2.8

Mountain Car (NO) —83.04+0.0 —T74.7T4+ 7.8 645 4+ 8.6 —81.74+ 0.1 —82.94+ 0.1 -60.2 4+ 2.0 —67.4+ 1.4 —73.5+ 0.5

Acrobot (NO)* —393.54+0.0 -186.7 + 31.3 -164.5 4+ 134 —233.14+ 0.4 —258.5+ 14.0 -1496 + 8.6 —213.44+ 6.3 —236.6%+ 6.2

Cart-Pole Balancing (SI)* 76.3+0.1 431.71+274.1 9805 + 7.3 69.04+ 2.8 702.44+196.4 9803 + 5.1 746.6 + 93.2 7T1.6+ 2.9

Inverted Pendulum (SI) —121.840.2 —5.34+ 5.6 148 + 1.7 —108.7+ 4.7 —92.84+ 23.9 141 <+ 09 —51.8+ 10.6 —63.14+ 4.8

Mountain Car (SI) —82.74+0.0 —63.94+ 0.2 618 4+ 04 —81.44 0.1 —80.74+ 2.3 -61.6 + 04 —63.9+ 1.0 —66.9+ 0.6

Acrobot (SI)* —387.84+1.0 -169.1 -+ 323 -156.6 -+ 389 —233.24+ 2.6 —-216.14& T.7 -1709 L+ 403 —250.24+ 13.7 —245.04L+ 5.5

Swimmer + Gathering 0.0+0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
Ant + Gathering —5.84+5.0 —0.14+ 0.1 —0.44+ 0.1 —5.54+ 0.5 —6.74+ 0.7 —0.44+ 0.0 —4.74+ 0.7 N/A + N/A —0.34+ 0.3
Swimmer + Maze 0.04+£0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.04+& 0.0 0.0+ 0.0 0.04+& 0.0 0.0+ 0.0 0.0+ 0.0
Ant + Maze 0.0+0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 N/A + N/A 0.0+ 0.0

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control"

Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Multigoal RL

Katerina Fragkiadaki

So far we train one policy/value function per task, e.g., win the game of Tetris, win the
game of Go, reach to a *particular” location, put the green cube inside the gray bucket,
etc.

Universal value function Approximators

V(is;0) = V(s,g;0)

=

All the methods we have learnt so far can be used.

7(s; 60)

n(s, g;0)

At the beginning of an episode, we sample not only a start state but also
a goal g, which stays constant throughout the episode

The experience tuples should contain the goal.

(s,a,r,s’) = (S, g,a,r, s’)

Universal Value Function Approximators, Schaul et al.

Universal value function Approximators

V(s,0) = Vi(s,0,8)

n(s;0) = 7x(s,g;0)

What should be my goal representation?

(not an easy question)

- Manual: 3d centroids of objects, robot joint angles and velocities, 3d
location of the gripper, etc.

- Learnt: We supply a target image as the goal, and the method learns to
map it to an embedding vector, e.g., asymmetric actor-critic, Lerrel et al.

Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

Main idea: use failed executions under one goal g, as successful executions
under an alternative goal g’ (which is where we ended spat the end of the

episode)

/ ‘ Goal g’
No reward :-(
O reward :-)
Goal g Our reacher at the end of the episode Our reacher at the end of the episode

(s, g,a,0,5) (S, g, a,l,s’)

Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

Main idea: use failed executions under one goal g, as successful executions
under an alternative goal g’ (which is where we ended spat the end of the
episode)

HINAsIgnt Experience Replay

Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, >e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g S(sg,...,s7) =m(sr)
e areward functionr: S x A x G — R. >e.g. r(s,a,g9) = —[fy(s) =0]
Initialize A > e.g. initialize neural networks

Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sy.
fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:
a; < mp(5¢]|9) > || denotes concatenation
Execute the action a; and observe a new state s; 1
end for
fort = 0,7 —1do
re = 1(S¢,a¢, g)

Store the transition (s¢||g, a¢, r¢, Si+1/lg) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for ¢’ € G do
!/ .__ /
r' = 1r(s¢,at,9)
Store the transition (s;||g’, a¢, v, s¢v1l|g’) in R > HER
end for \
end for Usually as additional goal
fort = 1, N do we pick the goal that this
Sample a minibatch B from the replay buffer R episode achieved, and the
Perform one step of optimization using A and minibatch B reward becomes non zero

end for
end for

HINAsIgnt Experience Replay

Reward shaping: instead of using binary rewards, use continuous rewards, e.g., by
considering Euclidean distances from goal configuration

HER does not require reward shaping! :-)

The burden goes from designing the reward to designing the goal encoding.. :-(

HINAsIgnt Experience Replay

- = DDPG - DDPG+count-based exploration — DDPG+HER - DDPG+HER (version from Sec. 4.5)
pushing sliding pick-and-place
100% 100% 100%
80% 80% 80%
2
C 60% 60% 60%
7
@
S 40% 40% 40%
7
20% 20% 20%
0% ——— 0% 0%
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

epoch number (every epoch = 800 episodes = 800x50 timesteps)

