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Outline

 RL in primates
 RL in humans
» Error signals and predictive coding
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Reward based learning in primates
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Dopamine As Reward Signal

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]
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Reward predicted
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Dopamine As Reward Signal

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]

Reward predicted
Reward occurs

error = 1, +y V(s,,,) - V(s,)

Reward predicted
No reward occurs
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Reward based learning in humans

_RNING
EEEEEEEEEE Tom Mitchell, October 2018



RL Models for Human Learning

a Experimental design
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[Seymore et al., Nature 2004]

b Temporal difference value ¢ Temporal difference
prediction error
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Figure 1 Experimental design and temporal difference model. a, The experimental design  during learning the prediction error is transferred to earlier cues as they acquire the
expressed as a Markov chain, giving four separate trial types. b, Temporal difference ability to make predictions. In trial types 3 and 4, the substantial change in prediction
value. As learning proceeds, earlier cues learn to make accurate value predictions (thatis,  elicitsalarge positive or negative prediction error. (For clarity, before and mid-learning are
weighted averages of the final expected pain). ¢, Temporal difference prediction error; shown only for trial type 1.)
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Figure 2 Temporal difference prediction error (statistical parametric maps). Areas
coloured yellow/orange show significant correlation with the temporal difference
prediction error. Yellow represents the greatest correlation. Peak activations (MNI r 2018



One Theory of RL in the Brain

from [Nieuwenhuis et al.]

« Basal ganglia monitor events, predict future rewards

« When prediction revised upward (downward), causes increase
(decrease) in activity of midbrain dopaminergic neurons,
influencing ACC

* This dopamine-based activation

Frontal e o
somehow results in revising the L A . N
reward prediction function. Satim-g_ .
Possibly through direct influence e y

on Basal ganglia, and via
prefrontal cortex

Accumbens -

Amygdafa | \l\ \—"
Ventral \
tegmental Substantla
M L area nigra
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Axonal arbor of a single neuron producing
dopamine as a neurotransmitter. These
axons make synaptic contacts with a huge
number of dendrites of neurons in targeted
brain areas.

Adapted from The Journal of Neuroscience,
Matsuda, Furuta, Nakamura, Hioki, Fujiyama,
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dendrite

dopamine
D2?
dopamine
striatal varicosities
neuron

Figure 15.1: Spine of a striatal neuron showing input from both cortical and dopamine neurons.
Axons of cortical neurons influence striatal neurons via corticostriatal synapses releasing the
neurotransmitter glutamate at the tips of spines covering the dendrites of striatal neurons.
An axon of a VTA or SNpc dopamine neuron is shown passing by the spine (from the lower
right). “Dopamine varicosities” on this axon release dopamine at or near the spine stem, in an
arrangement that brings together presynaptic input from cortex, postsynaptic activity of the
striatal neuron, and dopamine, making it possible that several types of learning rules govern the
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Neuron Level Learning Mechanisms

* Hebbian learning
— fire together > wire together

« Spike Timing Dependent Plasticity
(STDP)

— if incoming neuron fires before outgoing
then strengthen connection

— if incoming neuron fires after outgoing
then weaken connection

« Reward modulated STDP

— less understood

— in some neurons, appears STDP occurs only if neuromodulator
(e.g., dopamine) activity follows firing within time up to 10 sec
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Figure 15.5: Actor—critic ANN and a hypothetical neural implementation. a) Actor—critic
algorithm as an ANN. The actor adjusts a policy based on the TD error ¢ it receives from the
critic; the critic adjusts state-value parameters using the same 4. The critic produces a TD error
from the reward signal, R, and the current change in its estimate of state values. The actor does
not have direct access to the reward signal, and the critic does not have direct access to the
action. b) Hypothetical neural implementation of an actor—critic algorithm. The actor and the
value-learning part of the critic are respectively placed in the dorsal and ventral subdivisions
of the striatum. The TD error is transmitted by dopamine neurons located in the VTA and
SNpc to modulate changes in synaptic efficacies of input from cortical areas to the ventral and
dorsal striatum. Adapted from Frontiers in Neuroscience, vol. 2(1), 2008, Y. Takahashi, G.
ML Schoenbaum, and Y. Niv, Silencing the critics: Understanding the effects of cocaine sensitization
"""""""" " on dorsolateral and ventral striatum in the context of an Actor/Critic model. dber 2018



Summary: Temporal Difference ML Model
Predicts Dopaminergic Neuron Acitivity during Learning

« Evidence now of neural reward signals from

— Direct neural recordings in monkeys
— fMRI in humans (1 mm spatial resolution)
— EEG in humans (1-10 msec temporal resolution)

« Dopaminergic responses encode Temporal Difference error

« Some differences, and efforts to refine the model
— How/where is the value function encoded in the brain?
— Study timing (e.g., basal ganglia learns faster than PFC ?)
— Role of prior knowledge, rehearsal of experience, multi-task learning?
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Predictive Coding
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Predictive coding in the visual cortex:
a functional interpretation of some
extra-classical receptive-field effects

Rajesh P. N. Rao! and Dana H. Ballard?

I The Salk Institute, Sloan Center for Theoretical Neurobiology and Computational Neurobiology Laboratory, 10010 N. Torrey Pines Road,
La Jolla, California 92037, USA

2 Department of Computer Science, University of Rochester, Rochester, New York 14627-0226, USA
Correspondence should be addressed to R.P.N.R. (rao@salk.edu)

We describe a model of visual processing in which feedback connections from a higher- to a lower-
order visual cortical area carry predictions of lower-level neural activities, whereas the feedforward
connections carry the residual errors between the predictions and the actual lower-level activities.
When exposed to natural images, a hierarchical network of model neurons implementing such a
model developed simple-cell-like receptive fields. A subset of neurons responsible for carrying the
residual errors showed endstopping and other extra-classical receptive-field effects. These results
suggest that rather than being exclusively feedforward phenomena, nonclassical surround effects in
the visual cortex may also result from cortico-cortical feedback as a consequence of the visual system
using an efficient hierarchical strategy for encoding natural images.
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Fig. |. Hierarchical network for predictive coding. (a) General
architecture of the hierarchical predictive coding model. At each
hierarchical level, feedback pathways carry predictions of neural
activity at the lower level, whereas feedforward pathways carry
residual errors between the predictions and actual neural activity.
These errors are used by the predictive estimator (PE) at each level
to correct its current estimate of the input signal and generate the
next prediction. (b) Components of a PE module, composed of

[Rao & Ballard, 1999]
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Fig. |. Hierarchical network for predictive coding. (a) General C
architecture of the hierarchical predictive coding model. At each
hierarchical level, feedback pathways carry predictions of neural
activity at the lower level, whereas feedforward pathways carry
residual errors between the predictions and actual neural activity.

These errors are used by the predictive estimator (PE) at each level

to correct its current estimate of the input signal and generate the .y !
next prediction. (b) Components of a PE module, composed of < PE !
feedforward neurons encoding the synaptic weights UT, neurons T
whose responses r maintain the current estimate of the input signal,
feedback neurons encoding U and conveying the prediction f(Ur) to
the lower level, and error-detecting neurons computing the differ-
ence (r — r'9) between the current estimate r and its top-down prediction r'd from a higher level. (c) A three-level hierarchical network used
in the simulations. An input image was analyzed by three level-1 PE modules, each predicting its own local image patch. The responses r of all
three level-1 modules were input to the level-2 module. This convergence of lower-level inputs to a higher-level module increases receptive-
field size of neurons as one ascends the hierarchy, with the receptive field at the highest level spanning the entire input image.

Level 0 Level 1 Level 2
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Level 1

b : # - teristic of simple cells2. (c) RF profiles of 12
- . - . of the 128 level-2 feedforward model neu-

: J ' rons. (d) Localized RF profiles resembling

'-' - _ Gabor wavelets obtained by using a sigmoidal

- - . - ™ nonlinearity in the generative model, along

with a sparse kurtotic prior distribution for

Level 2

Fig. 2. Receptive fields of feedforward model neurons after
training on natural images. (a) Five natural images used for
training the three-level hierarchical network of Fig. Ic
(Methods). The two upper boxes in the bottom right corner
show relative sizes (16 x 16 and 16 x 26 pixels) of level-| and
level-2 receptive fields respectively. (b) Learned synaptic
weights (RF weighting profiles) of 20 of the 32 feedforward
model neurons in the level-I module analyzing the central image
region. Flanking image regions were analyzed by two other
level-1 modules (Fig. Ic), each with 32 feedforward model
neurons (Methods). Values for these synapses, which form rows
of the matrix UT, can be positive (excitatory, bright regions) or
negative (inhibitory, dark regions). These RF profiles resemble

classical oriented-edge/bar detectors charac-

the network activities (Methods). All 32

C ; . level-1 feedforward model neurons are
'J‘ . shown; Gaussian windowing of inputs (as in
' b) was not necessary in this case.

Level 1 (with sparse prior distribution)
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