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Paradox

The requirement of large number of 
samples for model-free RL, only 

possible in simulation, renders model-
free RL a model-based framework: we 

can’t do without the simulator. 



We want to learn 
manipulation and locomotion 

policies, what do we do?



Choices

1. We use a Physics simulator, where Physics rules between objects 
and/or particles have been hand coded by engineers. We train our 
policies there with trial-and-error and/or demonstations in 
simulation. We then transfer them in the real world.

2. We directly learn policies in the real world. Because we cannot 
afford many samples, model-based RL isusually a better choice 
than model-free RL.

We want to learn manipulation and locomotion policies, what do we do?
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In the course so far

1. We use a Physics simulator, where Physics rules between objects 
and/or particles have been hand coded by engineers. We train our 
policies there with trial-and-error and/or demonstations in 
simulation. We then transfer them in the real world.

2. We go directly in the real world and learn policies there. Because 
we cannot afford many samples, model-based control is a better 
choice than model-free RL.

3. We build better simulators to better model the real world, e.g., 
food: object deformation, fluids, etc.. Then, GOTO 1.

We want to learn manipulation and locomotion policies, what do we do?



This lecture

1. We use a Physics simulator, where Physics rules between objects 
and/or particles have been hand coded by engineers. We train our 
policies there with trial-and-error and/or demonstations in 
simulation. We then transfer them in the real world.

2. We go directly in the real world and learn policies there. Because 
we cannot afford many samples, model-based control is a better 
choice than model-free RL.

3. We build better simulators to better model the real world, e.g., 
food: object deformation, fluids, etc.. Then, GOTO 1.

We want to learn manipulation and locomotion policies, what do we do?



Pros of Simulation

• We can afford many more samples

• Safe: we do not want to deploy partially trained policies in the real 
world

• Avoids wear and tear of the robot

• We can explore creative robot configurations



Cons of Simulation

• Under-modeling: It is hard to exactly replicate the real world and its 
uncertainty

• Large engineering effort into building the environment which we care to 
manipulate

• Wrong parameters. Even if our physical equations were correct, we 
would need to estimate the right parameters, e.g., inertia, frictions 
(system identification). 

• Systematic discrepancy w.r.t.  the real world regarding:

1. observations

2. dynamics

policies learnt in simulation may not directly transfer to the real world



Mostly rigid body simulators
Mujoco

http://www.mujoco.org/image/home/mujocodemo.mp4

http://www.mujoco.org/image/home/mujocodemo.mp4


Particle based physics simulator

 

https://www.youtube.com/watch?v=1o0Nuq71gI4

FLEX: Real-time simulator on a GPU for both rigid and soft bodies, fluids and gas.

https://developer.nvidia.com/nvidia-flex-production-quality-simulation
https://www.youtube.com/watch?v=1o0Nuq71gI4


• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real 

domain
• Learning to adapt the dynamics of the simulator to match the real 

domain 
• Learning from label (as opposed to pixel) maps-> semantic maps 

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level 

dynamics are very different between Sim and REAL

What has shown to work
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Domain Randomization for Transferring Deep Neural 
Networks from Simulation to the Real World

Tobin et al., 2017 
arXiv:1703.06907

Domain randomization

We create (automatically) tons of simulation environments  by randomizing 
textures and camera viewpoints. We use the simulation data to train object 
detectors

Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Tobin et al.



1. Obtaining object masks
○ background subtraction gives ground truth object masks

2. Creating synthetic labelled data
○ Massive augmentation of ground truth masks by random 

transformations/occlusions and random backgrounds

3. Training object detectors
○ Mask R-CNN

Similar randomization can be used for training object detectors on-the-
fly in the real world directly

Data dreaming

Data Dreaming for Object Detection:  Learning Object-Centric State Representations for Visual Imitation, Sieb et al.



Cuboid Pose Estimation

Let’s try a more fine grained task



Data Generation

Synthetic data generation



Data Generation

Synthetic data generation



Model Output - Belief Maps
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Baxter’s camera

SIM2REAL

• Pose detector fails when the brightness of the image changes. What will we 
do?

• Randomize also the brightness



Data - Contrast and Brightness

Synthetic data generation



Baxter’s camera

SIM2REAL

• Now it works..



Surprising Result

SIM2REAL

• Even for non cube objects sometimes



Baxter’s camera

SIM2REAL

• It can fail under heavy clutter. 
• Solution: use an architecture from  computer vision research: combine object 

detection with pose regression, do not regress directly to vertices with the 
whole image as input



Car detection

Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization, NVIDIA

VKITTI

DR

VKITTI: a carefully designed simulation dataset to mimic real driving 
conditions, large engineering effort
DR: an automatically created simulation dataset with non-realistic visuals and 
content, small engineering effort

The fewer the real labelled data, the larger the gain from synthetic data
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GTA: synthetic data of urban scenes 
from a camera mounted on a car

Cityscapes: real data of urban scenes

from a camera mounted on a car

19 object classes to be detected: people, cars, stop signs, poles, etc.

add some imagesadd some images

Our goal: Train detectors and pixel labelers on GTA that generalize to 
Cityscapes

source target

Domain adaptation for visual observations



Train a classifier on source and test it on the target, and hope it generalizes
1. Pick a network architecture, e.g. ResNet101 or VGG

2. Download a pertained neural network, e.g., trained for image classification on 

Imagenet, or trained for pixel labelling in PASCAL

3. Finetune it on the source domain (GTA)

4. Apply on the target domain (Cityscapes)

pixel labelling in PASCAL

Image classification in Imagenet

target image Labeller NN

?

Testing

source image Labeller NN label mask

RUI

Training

Baseline



Train a classifier on source and test it on the target, and hope it generalizes
1. Download a pertained neural network, e.g., trained for image classification on 
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Train a classifier on source and test it on the target, and hope it generalizes
1. Download a pertained neural network, e.g., trained for image classification on 

Imagenet, or trained for pixel labelling in PASCAL

2. Finetune it on the source domain (GTA)

3. Apply on the target domain (Cityscapes)
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Pretrain on PASCAL -> cotrain in GTA/PASCAL->test in Cityscapes: 39% meanIoU

Catastrophic forgetting: 

• During fine-tuning, the network forgets the general 

and nicely transferable PASCAL features! 

• Finetuning a neural net on a very limited domain is a 

bad idea for transfer

Baseline



Learning to translate images

• Paired

Image Translation:  and  are pair-wise labeled

Junho Cho, Perception and Intelligence Lab, SNU 3• Unpaired (this is our case)

Junho Cho, Perception and Intelligence Lab, SNU 6



Discriminator of pix2pix

Junho Cho, Perception and Intelligence Lab, SNU 25

Paired case
• The generator takes the (source) image as input and tries to output the 

corresponding target image
• Pairs of source-target images as input to discriminator



Loss function

: source image, : target image, : noise

Junho Cho, Perception and Intelligence Lab, SNU 26

Paired case



Junho Cho, Perception and Intelligence Lab, SNU 28

Paired case



Junho Cho, Perception and Intelligence Lab, SNU 30

Paired case



Junho Cho, Perception and Intelligence Lab, SNU 31

Paired case



proposed DiscoGAN

Junho Cho, Perception and Intelligence Lab, SNU 73

Unpaired case



CycleGAN has similar contribution on this point

Junho Cho, Perception and Intelligence Lab, SNU 74

Cycle GAN / DISCO GAN



Junho Cho, Perception and Intelligence Lab, SNU 75

Cycle GAN / DISCO GAN



CycleGAN

Use more GAN techniques: LSGAN, use image buffer of previous generated samples

Junho Cho, Perception and Intelligence Lab, SNU 79

Unpaired case



Junho Cho, Perception and Intelligence Lab, SNU 80

Unpaired case



Junho Cho, Perception and Intelligence Lab, SNU 81

Unpaired case



Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

•                         : given image I and end-effector motion v, will I 
eventually successfully grasp? 

•                           can be trained with supervised learning. I want to 
use a simulated environment to quickly collect lots of samples. 
What I train I want it to generalize to the real world

• Two approaches: a feature level sim2real adaptation and a pixel 
level sim2real adaptation

SIM2real for learning to grasp

Grasp(I, v, θ)

Grasp(I, v, θ)



• Use Bullet simulator to emulate the Kuka hardware setup. Camera 
is mounted over the Kuka shoulder

• 51300 ShapeNet 3d models
• Use progressively better grasping models to collect data
• Randomization: both visuals and dynamics were randomized in 

simulation: the background image, object masses, textures, 
coefficients of friction.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

SIM2real for learning to grasp



We add a domain classifier, that 
attempts to classify the domain 
the features come from

The shared features C1, C2 
attempt to confuse the domain 
classifier (maximize its loss), 
while the domain classifier 
features attempts to min. its loss. 

Grasping prediction (task loss)

Feature adaptation

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Two losses: domain confusion loss and grasping prediction loss



Grasping prediction 

(task loss)

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Pixel Adaptation

mask mf

mask ms

Goal: we want our generator to refine simulated images so that: 
1. they do well in the task loss (grasping),
2. look real
3. retain the same semantics as their simulated counterparts



Pixel Adaptation

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Goal: we want our generator to refine simulated images so that: 
1. they do well in the task loss (grasping),
2. look real
3. retain the same semantics as their simulated counterparts



Results



• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real 

domain 
• Learning to adapt the dynamics of the dymulator to match the real 

domain
• Learning not from pixels but rather from label maps-> semantic maps 

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level 

dynamics are very different between Sim and REAL

What has shown to work



Ideas:
• Consider a distribution over simulation models instead of a single one 

for learning policies robust to modeling errors that work well under 
many ``worlds”. Hard model mining.

• Progressively bring the simulation model distribution closer to the real 
world. 



Policy Search under model distribution

p: simulator parameters

Learn a policy that performs best in expectation over MDPs in the source 
domain distribution:

I consider a distribution over simulation parameters, as opposed to a single set



Policy Search under model distribution

p: simulator parameters

Learn a policy that performs best in expectation over MDPs in the source 
domain distribution:

Learn a policy that performs best in expectation over the worst \epsilon-
percentile of MDPs in the source domain distribution

Hard world model mining



Hard model mining

Select the simulation parameters where the current policy fails



Hard model mining results

Hard world mining results in policies with high reward over wider range of 
parameters



Performance on hopper policies
trained on 
Gaussian 
distribution of 
mean mass 6 
and standard 
deviation 1.5trained on single source domains



• Overly conservative policies
• Same instances of the problem may not have solution and hinder 

policy search
• Instead: try to bring the simulation dynamics closeto the real world 

dynamics

What can go wrong with dynamics randomization?
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Adapting the source domain distribution

Sample  sets of simulation parameters    from a sampling distribution S.
Posterior of parameters p_i:

Fit a Gaussian model over simulator parameters based on posterior 
weights of the samples

The more probable is an observed target state-action trajectory, the more 
probable the simulation model



Source Distribution Adaptation





Adapting simulation to the real world

https://sites.google.com/view/simopt

https://sites.google.com/view/simopt
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Idea: the driving policy is not directly exposed to raw perceptual input or low-
level vehicle dynamics.



Main idea
Pixels to steering wheel mapping is not SIM2REAL transferable: image textures 
and car dynamics mismatch

Instead: label maps to waypoint mapping is better SIM2REAL transferable: 
label maps and waypoints are similar across SIM and REAL. A low-level 
controller will take the car from waypoint to waypoint in the real world



We train policies via behaviour cloning (standard regression loss) in 
Town1/ Weather1  dataset, and evaluate them on all four.

Train/Test




