Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

SIM2Real Transfer

Katerina Fragkiadaki

The requirement of large number of
samples for model-free RL, only
possible in simulation, renders model-
free RL a model-based framework: we
can’t do without the simulator.

We want to learn
manipulation and locomotion
policies, what do we do?

Choices

We want to learn manipulation and locomotion policies, what do we do?

1. We use a Physics simulator, where Physics rules between objects
and/or particles have been hand coded by engineers. We train our
policies there with trial-and-error and/or demonstations in
simulation. We then transfer them in the real world.

2. We directly learn policies in the real world. Because we cannot
afford many samples, model-based RL isusually a better choice
than model-free RL.

Choices

We want to learn manipulation and locomotion policies, what do we do?

1. We use a Physics simulator, where Physics rules between objects
and/or particles have been hand coded by engineers. We train our
policies there with trial-and-error and/or demonstations in
simulation. We then transfer them in the real world.

2. We directly learn policies in the real world. Because we cannot
afford many samples, model-based RL isusually a better choice
than model-free RL.

3. We build better simulators to better model the real world, e.g.,
food: object deformation, fluids, etc.. Then, GOTO 1.

N the course so far

We want to learn manipulation and locomotion policies, what do we do?

1. We use a Physics simulator, where Physics rules between objects
and/or particles have been hand coded by engineers. We train our

policies there with trial-and-error and/or demonstations in
simulation.

This lecture

We want to learn manipulation and locomotion policies, what do we do?

1. We use a Physics simulator, where Physics rules between objects
and/or particles have been hand coded by engineers. We train our
policies there with trial-and-error and/or demonstations in
simulation. We then transfer them in the real world.

3. We build better simulators to better model the real world, e.g.,
food: object deformation, fluids, etc.. Then, GOTO 1.

Pros of Simulation

 We can afford many more samples

« Safe: we do not want to deploy partially trained policies in the real
world

 Avoids wear and tear of the robot

* We can explore creative robot configurations

Cons of Simulation

* Under-modeling: It is hard to exactly replicate the real world and its
uncertainty

* Large engineering effort into building the environment which we care to
manipulate

 Wrong parameters. Even if our physical equations were correct, we
would need to estimate the right parameters, e.g., inertia, frictions
(system identification).

* Systematic discrepancy w.r.t. the real world regarding:
1. observations
2. dynamics

policies learnt in simulation may not directly transfer to the real world

Mostly rigid body simulators

http://www.mujoco.org/image/home/mujocodemo.mp4

http://www.mujoco.org/image/home/mujocodemo.mp4

Particle based physics simulator

FLEX: Real-time simulator on a GPU for both rigid and soft bodies, fluids and gas.

https://www.youtube.com/watch?v=100Nuq71gl4

https://developer.nvidia.com/nvidia-flex-production-quality-simulation
https://www.youtube.com/watch?v=1o0Nuq71gI4

What has shown to work

e Domain randomization (dynamics, visuals)

* Learning to adapt the textures of the simulator to match the real
domain

* Learning to adapt the dynamics of the simulator to match the real
domain

* Learning from label (as opposed to pixel) maps-> semantic maps
petween simulation and real world are closer than textures

* Learning higher level policies, not low-level controllers, as the low level
dynamics are very different between Sim and REAL

What has shown to work

 Domain randomization (, visuals)

Domain randomization

We create (automatically) tons of simulation environments by randomizing
textures and camera viewpoints. We use the simulation data to train object
detectors

Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Tobin et al.

Data dreaming

1. Obtaining object masks
o background subtraction gives ground truth object masks

2. Creating synthetic labelled data

o Massive augmentation of ground truth masks by random
transformations/occlusions and random backgrounds

3. Training object detectors
o Mask R-CNN

=

Similar randomization can be used for training object detectors on-the-
fly in the real world directly

/ instance segmentation

Data Dreaming for Object Detection: Learning Object-Centric State Representations for Visual Imitation, Sieb et al

L et's try a more fine grained task

Cuboid Pose Estimation

Synthetic data generation

Synthetic data generation

Regressing to vertices

SIM2REAL

+ Pose detector fails when the brightness of the image changes. What will we
do?

- Randomize also the brightness

Synthetic data generation

Data - Contrast and Brightness

N
\ :
i ﬁ‘ - ‘ \
‘ ‘\ W : ’
i o ST,
_‘ J bl § 0
-
Wk e
zw = '
\ —
‘ - nOg

SIM2REAL

- Now it works..

SIM2REAL

Surprising Result

-+ Even for non cube objects sometimes

SIM2REAL

Baxter's camera

It can fail under heavy clutter.
- Solution: use an architecture from computer vision research: combine object
detection with pose regression, do not regress directly to vertices with the

whole image as input

Car detection

VKITTI: a carefully designed simulation dataset to mimic real driving
conditions, large engineering effort

DR: an automatically created simulation dataset with non-realistic visuals and
content, small engineering effort

VKITTI

AP @ .50 loU

DR

The fewer the real labelled data, the larger the gain from synthetic data

Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization, NVIDIA

What has shown to work

* Learning to adapt the textures of the simulator to match the real
domain

Domain adaptation for visual observations

GTA: synthetic data of urban scenes Cityscapes: real data of urban scenes
from a camera mounted on a car from a camera mounted on a car

D L :
2 il |
-[i iml.
= " 3
N R]
-
A \,

19 object classes defected: people, cars, stop signs, poles, etc.

source target

Our goal: Train detectors and pixel labelers on GTA that generalize to
Cityscapes

Baseline

Train a classifier on source and test it on the target, and hope it generalizes

1. Pick a network architecture, e.g. ResNet101 or VGG

Download a pertained neural network, e.g., trained for image classification on
Imagenet, or trained for pixel labelling in PASCAL

Finetune it on the source domain (GTA)

Apply on the target domain (Cityscapes)

s

Training
source image Labeller NN label mask

b

. E>

O7: bedr et
L hasscan £ birdhoiuss
2: mibus 2 uding daor Logorbags wuck
9: ovan 2 winday srem Sraw 1k
4: uracher & mallbex Azamiar wuck

5 halFrack S:golan

pixel labelling in PASCAL

Testing
target image Labeller NN

Baseline

Train a classifier on source and test it on the target, and hope it generalizes

1. Download a pertained neural network, e.g., trained for image classification on
Imagenet, or trained for pixel labelling in PASCAL

2. Finetune it on the source domain (GTA)

3. Apply on the target domain (Cityscapes)

Pretrain on Imagenet -> finetune in GTA->test in GTA: 53% meanloU
Pretrain on Imagenet -> finetune in GTA->test in Cityscapes: 28% meanloU

Pretrain on PASCAL -> finetune in GTA->test in GTA: 58.84% meanloU
Pretrain on PASCAL -> finetune in GTA->test in Cityscapes: 32% meanloU

Pretrain on PASCAL -> in GTA/PASCAL->test in Cityscapes: 39% meanloU

Baseline

Catastrophic forgetting:

e During fine-tuning, the network forgets the general
and nicely transferable PASCAL features!

e Finetuning a neural net on a very limited domain is a
bad idea for transfer

L earning to translate images

Labels to Facade BW to Color

 Paired

input ' out input output
Day to Night Edges to Photo

7
input output input output

* Unpaired (this is our case)

orange — apple

Palred case

The generator takes the (source) image as input and tries to output the
corresponding target image

Pairs of source-target images as input to discriminator

Positive examples Negative examples
Real or fake pair? Real or fake pair?

G tries to synthesize fake
images that fool D

D tries to identify the fakes

Palred case

G tries to synthesize fake
images that fool D

D tries to identify the fakes

x. source image, y: target image, z: noise

Legan (G, D) = Eyyp,.. (@) 108 D(, Y)] + Egop,,. (), 2, (2) 108(1 — D(z, G(z, 2)))]

EL]- (G) — Ewaprdata (w,y),szz(Z) H |y B G(x’ Z) | ‘]—]

Palred case

Ground truth L1+ cGAN

Palred case

Ground truth Ground truth Output

Palred case

Ground truth Ground truth

-

- i

"~ JunhoCho, P

erception and Inte

Unpalired case

Cycle GAN / DISCO GAN

§ cycle-consistency
- nsi : >@\... ke loss
. cycle-consistency | .. :

D X D Y | loss ' § /.

(a) | (b) 5 (©)

Cycle GAN / DISCO GAN

Figure 7: Different variants of our method for mapping labels<+photos trained on cityscapes. From left to right: input, cycle-
consistency loss alone, adversarial loss alone, GAN + forward cycle-consistency loss (F'(G(x)) ~ x), GAN + backward
cycle-consistency loss (G(F(y)) = y), CycleGAN (our full method), and ground truth. Both Cycle alone and GAN +
backward fail to produce images similar to the target domain. GAN alone and GAN + forward suffer from mode collapse,
producing identical label maps regardless of the input photo.

Unpalired case

Monet Z_ Photos

\“' “1‘:\ ,»I
AV
zebra —> horse

Photograph

Summer _ Winter

Unpalired case

Input Output
)

Input

npaired case

Input . it Input Output

orane — apple

SIMZ2real for learning to grasp

el

(a) Simulated World (b) Real World (¢c) Simulated Samples (d) Real Samples

* Grasp(/, v, 8): given image | and end-effector motion v, will |
eventually successfully grasp?

* Grasp(/, v, 8) can be trained with supervised learning. | want to
use a simulated environment to quickly collect lots of samples.
What I train | want it to generalize to the real world

* Two approaches: a feature level sim2real adaptation and a pixel
level sim2real adaptation

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

SIMZ2real for learning to grasp

el

(a) Simulated World (b) Real World (¢c) Simulated Samples (d) Real Samples

* Use Bullet simulator to emulate the Kuka hardware setup. Camera
IS mounted over the Kuka shoulder

e 51300 ShapeNet 3d models
* Use progressively better grasping models to collect data

 Randomization: both visuals and dynamics were randomized in
simulation: the background image, object masses, textures,
coefficients of friction.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

-eature adaptation

Two losses: domain confusion loss and grasping prediction loss

We add a domain classifier, that
attempts to classity the domain
the features come from

b

e N ,
fc3 ‘ Domg!n

L: fo Classifier

8 __L— |

3 , Ng+N A »

£z " ZoanN = Y20 {dilogd; + (1—d;)log(1—d;)}
Q_

g

The shared features C1, C2
attempt to confuse the domain
classifier (maximize its 10ss),
while the domain classitier
features attempts to min. its loss.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Pixel Adaptation

Goal: we want our generator to refine simulated images so that:
1. they do well in the task loss (grasping),

2. look real

3. retain the same semantics as their simulated counterparts

[real/fake] | ;fA \

(X, X, 1 mask m*
(synthetic)

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Pixel Adaptation

Goal: we want our generator to refine simulated images so that:
1. they do well in the task loss (grasping),

2. look real
3. retain the same semantics as their simulated counterparts

~
/

real/fake | 9/ Generator G

skip connection

*] |-

/ Discriminator D

|
|

|

|
|

J

n64s1:IN:relu
n32s1:IN:relu
7x7n3s1:tanh

|
|
'

concatenate

n128s1:IN:relu
1x1n128s1:IN:relu

n64s1:IN:relu

{ bilinear up x2]
'

‘ 7x7n32s1:IN:relu ’
n256s1:IN:relu
v
] 2x2 avg-pool

n64s1:IN:relu
n32s1:IN:relu
7x7n3s1:tanh

MY
’--'-?o>Ie
N
= >
-/
'
—_ P
s
8 >
\
-

Y,

{ real/fake J

n1s1:sigmoid

A)
H Q) b
—
r x Y
~
Patches:
70x70x6
n64s2::relu
n128s2:IN:relu
n256s2:IN:relu
n256s2:IN:relu

) A}
[X, X, 1
(synthetic)

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Results

2 80.00% B Sim-Only
o

i _____ B Real-Only
g oU.00

x Sim+Real (Ours)
£ o

= 40.00

w

w

@

8 20.00

=

(5]

o

w

o

(&)

94K 188K 940K 1.9M 9.4M

Number of Real-World Samples Used for Training

(a) Procedural (b) ShapeNet [31] (c) Real

What has shown to work

Domain randomization (dynamics

EPOPT: LEARNING ROBUST NEURAL NETWORK
POLICIES USING MODEL ENSEMBLES

Aravind Rajeswaran', Sarvjeet Ghotra?, Balaraman Ravindran®, Sergey Levine*
aravrajl@cs.washington.edu, sarvijeet.131t236@nitk.edu.1in,
ravi@cse.iitm.ac.in, svlevine@eecs.berkeley.edu

1 University of Washington Seattle

2 NITK Surathkal

3 Indian Institute of Technology Madras

4 University of California Berkeley

|deas:

Consider a distribution over simulation models instead of a single one
for learning policies robust to modeling errors that work well under
many worlds”. Hard model mining.

Progressively bring the simulation model distribution closer to the real
world.

Policy Search under model distribution

Learn a policy that performs best in expectation over MDPs in the source
domain distribution:

- [T-1 17 |
¢ p: simulator parameters
E Y re(se,at) | p

S

| consider a distribution over simulation parameters, as opposed to a single set

Policy Search under model distribution

Learn a policy that performs best in expectation over MDPs in the source
domain distribution:

- [T-1 17 |
¢ p: simulator parameters
> 'ri(se.ar) | p

]EpN’P t,f-

Hard world model mining
Learn a policy that performs best in expectation over the worst \epsilon-
percentile of MDPs in the source domain distribution

max / nm (0, p)P(p)dp st. Pnpm(0,P)<y)=c¢
F(6)

0,y

Hard model mining

Algorithm 1: EPOpt—e for Robust Policy Search

Input:), 0y, niter, N, €
for iteration 1 = 0,1, 2, ...niter do
fork=1,2,... Ndo
sample model parameters pr ~ Py
sample a trajectory 7, = {s¢, as, ¢, .st+1}?:_01 from M (pg) using policy 7 (6;)
end
compute Q. = e percentile of {R(7x)}Y_,
select sub-set T = {71 : R(7x) < Q.}
Update policy: #;11 = BatchPolOpt(#;, T)

S

o e (=) n

10 end

Hard model mining results

Hard world mining results in policies with high reward over wider range of
parameters
EPOpt(e =1)

Maximum Likelihood EPOpt(e =0.1) 3600

1.5 1.5 1.5
1.6 1.6 1.6
1.7 1.7 1.7 3000
_ 18 1.8 1.8 2400
S 1.9 1.9 1.9
= 2.0 2.0 2.0 1800
U 2.1 2.1 2.1
w 2.2 2.2 2.2 1200
2.3 2.3 2.3
2.4 2.4 2.4 600
2.5 2.5 2.5 5

Torso Mass

Performance on hopper policies

trained on single source domains

4000
3500{
© 30001 |
<
< 2500
€ 2000
O
£ 15001
& 1000
500
0

— m=3 | | —m=9 I

3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9

Torso Mass Torso Mass Torso Mass

trained on
Gaussian
distribution of
mean mass 6
and standard
deviation 1.5

— Ensemble

3

4 5 6 7 8 9
Torso Mass

What can go wrong with dynamics randomization??

Overly conservative policies

Same instances of the problem may not have solution and hinder
policy search

Instead: try to bring the simulation dynamics closeto the real world
dynamics

What has shown to work

e Learning to adapt the dynamics of the dymulator to match the real
domain

Adapting the source domain distribution

Sample sets of simulation parameters from a sampling distribution S.
Posterior of parameters p_i:

Pp(pi
P(pi| k) o< [, P(Ste1 = Sgﬁ-)llsgk):agk)’pi) X p(p.)

Fit a Gaussian model over simulator parameters based on posterior
weights of the samples

The more probable is an observed target state-action trajectory, the more
probable the simulation model

Source Distribution Adaptation

Friction

3.0

Iteration O

Iteration 1

2.5

2.0 -

1.5

1.0

X

T

3.0

Ilteration 7

2.5

2.0 1

154

1.0

20 0

Torso Mass

3500

3000 -

2500

2000 -

1500 -

Performance

1000 -

500 -

Iterations

6

10

Closing the Sim-to-Real Loop:
Adapting Simulation Randomization with Real World Experience

Yevgen Chebotar!? Ankur Handa! Viktor Makoviychuk!
Miles Macklin!+ Jan Issac! Nathan Ratliff! Dieter Fox !4

Fig. 1. Policies for opening a cabinet drawer and swing-peg-in-hole tasks trained by alternatively performing reinforcement learning with multiple agents
in simulation and updating simulation parameter distribution using a few real world policy executions.

Adapting simulation to the real worlo

Algorithm 1 SimOpt framework

I: pg, < Initial simulation parameter distribution f RlL " Dole)— smOpt -
2: € <—. KL-(.:liver.gence step for updating pg Trammg; .
3: for iteration 7 € {0,..., N} do P |
4: env « Simulation(p,,) Simulation Reality
RL A R B U - |

o0 . ~ RealRollout(rg ,,,) |

real

f ~ Samp|e(pd>z-)
7% ~ SimRollout(mg,p,. . €)

c(§) & D(7&°, 77en) D,
10: pg,,, + UpdateDistribution(pg,.&, c(£), €)

N A4

-

g}}rlll P£i+1’\’p¢7:+1 ["0.pp, [D(T‘Si-l—l' T?’eal)H

s.t. Dk, (P¢i+1 H])qsi) < €,

https://sites.google.com/view/simopt

https://sites.google.com/view/simopt

What has shown to work

* Learning not from pixels but rather from label maps-> semantic maps
petween simulation and real world are closer than textures

* Learning higher level policies, not low-level controllers, as the low level
dynamics are very different between Sim and REAL

Driving Policy Transfer via Modularity and

Abstraction
Matthias Miiller Alexey Dosovitskiy
Visual Computing Center Intelligent Systems Lab
KAUST, Saudi Arabia Intel Labs, Germany
Bernard Ghanem Vladlen Koltun
Visual Computing Center Intelligent Systems Lab
KAUST, Saudi Arabia Intel Labs, USA

Idea: the driving policy is not directly exposed to raw perceptual input or low-
level vehicle dynamics.

Main i1dea

Pixels to steering wheel mapping is not SIM2REAL transferable: image textures

and car dynamics mismatch

- . : .i".
il [

) ®

Control

/ u

Instead: label maps to waypoint mapping is better SIM2REAL transferable:
label maps and waypoints are similar across SIM and REAL. A low-level
controller will take the car from waypoint to waypoint in the real world

Perception module

~ ~

N / Segmentation
S

Driving policy Controller

/

N

\

9] s (7o) @

Control

> Waypomts
Command ¢ W

[Test

Weather 1 Weather 2

™
A00S| [l Cedoe o i
C[~ T U . p | |
d mig el o D henCa
1 A
[m] L i o~
~ - =" Je=
1 “ — C"_r =
Ly - A -) P |
O | [P 0p0 <ol
1 \ VT
P e Wl | f =
s | oD
§ L) C \
{)
< § o
|8 ! e
L I TR
L | ~ | |
o
| ~ | [
~ ¥ 4
| >
\ e
| I | IL
v |
| \ | [d
y L | 4 !
| [/!]
|
| | |
i J

Town 1

Town 2

We train policies via behaviour cloning (standard regression loss) in

Town1/ Weather1 dataset, and evaluate them on all four.

Weather 1 Weather 2

~F

Town 1

Town 2

0.8 - im \T’\(’);;?hlr 1
i - L \T\c’);lltlhfl:r 2
1 [mafonz
ME IR] | 1060 e R (e,

img2ctrl 1mg2ctrl+ 1mg2wp 1mg2wp+ img2wp+dr seg2ctrl seg2ctrl+ ours ours+

Figure 4: Quantitative evaluation of goal-directed navigation in simulation. We report the success
rate over 25 navigation trials in four town-weather combinations. The models have been trained
in Town 1 and Weather 1. The evaluated models are: img2ctrl — predicting low-level control from
color images; img2wp — predicting waypoints from color images; seg2ctrl — predicting low-level
control from the segmentation produced by the perception module; ours — predicting waypoints
from the segmentation produced by the perception module. Suffix ‘+” denotes models trained with
data augmentation, and ‘+dr’ denotes the model trained with domain ramdomization.

