
SIM2Real Transfer

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Paradox

The requirement of large number of
samples for model-free RL, only

possible in simulation, renders model-
free RL a model-based framework: we

can’t do without the simulator.

We want to learn
manipulation and locomotion

policies, what do we do?

Choices

1. We use a Physics simulator, where Physics rules between objects
and/or particles have been hand coded by engineers. We train our
policies there with trial-and-error and/or demonstations in
simulation. We then transfer them in the real world.

2. We directly learn policies in the real world. Because we cannot
afford many samples, model-based RL isusually a better choice
than model-free RL.

We want to learn manipulation and locomotion policies, what do we do?

Choices

1. We use a Physics simulator, where Physics rules between objects
and/or particles have been hand coded by engineers. We train our
policies there with trial-and-error and/or demonstations in
simulation. We then transfer them in the real world.

2. We directly learn policies in the real world. Because we cannot
afford many samples, model-based RL isusually a better choice
than model-free RL.

3. We build better simulators to better model the real world, e.g.,
food: object deformation, fluids, etc.. Then, GOTO 1.

We want to learn manipulation and locomotion policies, what do we do?

In the course so far

1. We use a Physics simulator, where Physics rules between objects
and/or particles have been hand coded by engineers. We train our
policies there with trial-and-error and/or demonstations in
simulation. We then transfer them in the real world.

2. We go directly in the real world and learn policies there. Because
we cannot afford many samples, model-based control is a better
choice than model-free RL.

3. We build better simulators to better model the real world, e.g.,
food: object deformation, fluids, etc.. Then, GOTO 1.

We want to learn manipulation and locomotion policies, what do we do?

This lecture

1. We use a Physics simulator, where Physics rules between objects
and/or particles have been hand coded by engineers. We train our
policies there with trial-and-error and/or demonstations in
simulation. We then transfer them in the real world.

2. We go directly in the real world and learn policies there. Because
we cannot afford many samples, model-based control is a better
choice than model-free RL.

3. We build better simulators to better model the real world, e.g.,
food: object deformation, fluids, etc.. Then, GOTO 1.

We want to learn manipulation and locomotion policies, what do we do?

Pros of Simulation

• We can afford many more samples

• Safe: we do not want to deploy partially trained policies in the real
world

• Avoids wear and tear of the robot

• We can explore creative robot configurations

Cons of Simulation

• Under-modeling: It is hard to exactly replicate the real world and its
uncertainty

• Large engineering effort into building the environment which we care to
manipulate

• Wrong parameters. Even if our physical equations were correct, we
would need to estimate the right parameters, e.g., inertia, frictions
(system identification).

• Systematic discrepancy w.r.t. the real world regarding:

1. observations

2. dynamics

policies learnt in simulation may not directly transfer to the real world

Mostly rigid body simulators
Mujoco

http://www.mujoco.org/image/home/mujocodemo.mp4

http://www.mujoco.org/image/home/mujocodemo.mp4

Particle based physics simulator

https://www.youtube.com/watch?v=1o0Nuq71gI4

FLEX: Real-time simulator on a GPU for both rigid and soft bodies, fluids and gas.

https://developer.nvidia.com/nvidia-flex-production-quality-simulation
https://www.youtube.com/watch?v=1o0Nuq71gI4

• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real

domain
• Learning to adapt the dynamics of the simulator to match the real

domain
• Learning from label (as opposed to pixel) maps-> semantic maps

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level

dynamics are very different between Sim and REAL

What has shown to work

• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real

domain
• Learning to adapt the dynamics of the dymulator to match the real

domain
• Learning from label (as opposed to pixel) maps-> semantic maps

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level

dynamics are very different between Sim and REAL

What has shown to work

Domain Randomization for Transferring Deep Neural
Networks from Simulation to the Real World

Tobin et al., 2017
arXiv:1703.06907

Domain randomization

We create (automatically) tons of simulation environments by randomizing
textures and camera viewpoints. We use the simulation data to train object
detectors

Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World, Tobin et al.

1. Obtaining object masks
○ background subtraction gives ground truth object masks

2. Creating synthetic labelled data
○ Massive augmentation of ground truth masks by random

transformations/occlusions and random backgrounds

3. Training object detectors
○ Mask R-CNN

Similar randomization can be used for training object detectors on-the-
fly in the real world directly

Data dreaming

Data Dreaming for Object Detection: Learning Object-Centric State Representations for Visual Imitation, Sieb et al.

Cuboid Pose Estimation

Let’s try a more fine grained task

Data Generation

Synthetic data generation

Data Generation

Synthetic data generation

Model Output - Belief Maps

0

1

2

3

4

5

6

Regressing to vertices

Baxter’s camera

SIM2REAL

• Pose detector fails when the brightness of the image changes. What will we
do?

• Randomize also the brightness

Data - Contrast and Brightness

Synthetic data generation

Baxter’s camera

SIM2REAL

• Now it works..

Surprising Result

SIM2REAL

• Even for non cube objects sometimes

Baxter’s camera

SIM2REAL

• It can fail under heavy clutter.
• Solution: use an architecture from computer vision research: combine object

detection with pose regression, do not regress directly to vertices with the
whole image as input

Car detection

Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization, NVIDIA

VKITTI

DR

VKITTI: a carefully designed simulation dataset to mimic real driving
conditions, large engineering effort
DR: an automatically created simulation dataset with non-realistic visuals and
content, small engineering effort

The fewer the real labelled data, the larger the gain from synthetic data

• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real

domain
• Learning to adapt the dynamics of the dymulator to match the real

domain
• Learning from label (as opposed to pixel) maps-> semantic maps

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level

dynamics are very different between Sim and REAL

What has shown to work

GTA: synthetic data of urban scenes
from a camera mounted on a car

Cityscapes: real data of urban scenes

from a camera mounted on a car

19 object classes to be detected: people, cars, stop signs, poles, etc.

add some imagesadd some images

Our goal: Train detectors and pixel labelers on GTA that generalize to
Cityscapes

source target

Domain adaptation for visual observations

Train a classifier on source and test it on the target, and hope it generalizes
1. Pick a network architecture, e.g. ResNet101 or VGG

2. Download a pertained neural network, e.g., trained for image classification on

Imagenet, or trained for pixel labelling in PASCAL

3. Finetune it on the source domain (GTA)

4. Apply on the target domain (Cityscapes)

pixel labelling in PASCAL

Image classification in Imagenet

target image Labeller NN

?

Testing

source image Labeller NN label mask

RUI

Training

Baseline

Train a classifier on source and test it on the target, and hope it generalizes
1. Download a pertained neural network, e.g., trained for image classification on

Imagenet, or trained for pixel labelling in PASCAL

2. Finetune it on the source domain (GTA)

3. Apply on the target domain (Cityscapes)

Pretrain on PASCAL -> finetune in GTA->test in GTA: 58.84% meanIoU
Pretrain on PASCAL -> finetune in GTA->test in Cityscapes: 32% meanIoU

Pretrain on Imagenet -> finetune in GTA->test in GTA: 53% meanIoU
Pretrain on Imagenet -> finetune in GTA->test in Cityscapes: 28% meanIoU

Pretrain on PASCAL -> cotrain in GTA/PASCAL->test in Cityscapes: 39% meanIoU

Baseline

Train a classifier on source and test it on the target, and hope it generalizes
1. Download a pertained neural network, e.g., trained for image classification on

Imagenet, or trained for pixel labelling in PASCAL

2. Finetune it on the source domain (GTA)

3. Apply on the target domain (Cityscapes)

Pretrain on PASCAL -> finetune in GTA->test in GTA: 58.84% meanIoU
Pretrain on PASCAL -> finetune in GTA->test in Cityscapes: 32% meanIoU

Pretrain on Imagenet -> finetune in GTA->test in GTA: 53% meanIoU
Pretrain on Imagenet -> finetune in GTA->test in Cityscapes: 28% meanIoU

Pretrain on PASCAL -> cotrain in GTA/PASCAL->test in Cityscapes: 39% meanIoU

Catastrophic forgetting:

• During fine-tuning, the network forgets the general

and nicely transferable PASCAL features!

• Finetuning a neural net on a very limited domain is a

bad idea for transfer

Baseline

Learning to translate images

• Paired

Image Translation: and are pair-wise labeled

Junho Cho, Perception and Intelligence Lab, SNU 3• Unpaired (this is our case)

Junho Cho, Perception and Intelligence Lab, SNU 6

Discriminator of pix2pix

Junho Cho, Perception and Intelligence Lab, SNU 25

Paired case
• The generator takes the (source) image as input and tries to output the

corresponding target image
• Pairs of source-target images as input to discriminator

Loss function

: source image, : target image, : noise

Junho Cho, Perception and Intelligence Lab, SNU 26

Paired case

Junho Cho, Perception and Intelligence Lab, SNU 28

Paired case

Junho Cho, Perception and Intelligence Lab, SNU 30

Paired case

Junho Cho, Perception and Intelligence Lab, SNU 31

Paired case

proposed DiscoGAN

Junho Cho, Perception and Intelligence Lab, SNU 73

Unpaired case

CycleGAN has similar contribution on this point

Junho Cho, Perception and Intelligence Lab, SNU 74

Cycle GAN / DISCO GAN

Junho Cho, Perception and Intelligence Lab, SNU 75

Cycle GAN / DISCO GAN

CycleGAN

Use more GAN techniques: LSGAN, use image buffer of previous generated samples

Junho Cho, Perception and Intelligence Lab, SNU 79

Unpaired case

Junho Cho, Perception and Intelligence Lab, SNU 80

Unpaired case

Junho Cho, Perception and Intelligence Lab, SNU 81

Unpaired case

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

• : given image I and end-effector motion v, will I
eventually successfully grasp?

• can be trained with supervised learning. I want to
use a simulated environment to quickly collect lots of samples.
What I train I want it to generalize to the real world

• Two approaches: a feature level sim2real adaptation and a pixel
level sim2real adaptation

SIM2real for learning to grasp

Grasp(I, v, θ)

Grasp(I, v, θ)

• Use Bullet simulator to emulate the Kuka hardware setup. Camera
is mounted over the Kuka shoulder

• 51300 ShapeNet 3d models
• Use progressively better grasping models to collect data
• Randomization: both visuals and dynamics were randomized in

simulation: the background image, object masses, textures,
coefficients of friction.

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

SIM2real for learning to grasp

We add a domain classifier, that
attempts to classify the domain
the features come from

The shared features C1, C2
attempt to confuse the domain
classifier (maximize its loss),
while the domain classifier
features attempts to min. its loss.

Grasping prediction (task loss)

Feature adaptation

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Two losses: domain confusion loss and grasping prediction loss

Grasping prediction

(task loss)

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Pixel Adaptation

mask mf

mask ms

Goal: we want our generator to refine simulated images so that:
1. they do well in the task loss (grasping),
2. look real
3. retain the same semantics as their simulated counterparts

Pixel Adaptation

Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping, Google, CVPR 2017

Goal: we want our generator to refine simulated images so that:
1. they do well in the task loss (grasping),
2. look real
3. retain the same semantics as their simulated counterparts

Results

• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real

domain
• Learning to adapt the dynamics of the dymulator to match the real

domain
• Learning not from pixels but rather from label maps-> semantic maps

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level

dynamics are very different between Sim and REAL

What has shown to work

Ideas:
• Consider a distribution over simulation models instead of a single one

for learning policies robust to modeling errors that work well under
many ``worlds”. Hard model mining.

• Progressively bring the simulation model distribution closer to the real
world.

Policy Search under model distribution

p: simulator parameters

Learn a policy that performs best in expectation over MDPs in the source
domain distribution:

I consider a distribution over simulation parameters, as opposed to a single set

Policy Search under model distribution

p: simulator parameters

Learn a policy that performs best in expectation over MDPs in the source
domain distribution:

Learn a policy that performs best in expectation over the worst \epsilon-
percentile of MDPs in the source domain distribution

Hard world model mining

Hard model mining

Select the simulation parameters where the current policy fails

Hard model mining results

Hard world mining results in policies with high reward over wider range of
parameters

Performance on hopper policies
trained on
Gaussian
distribution of
mean mass 6
and standard
deviation 1.5trained on single source domains

• Overly conservative policies
• Same instances of the problem may not have solution and hinder

policy search
• Instead: try to bring the simulation dynamics closeto the real world

dynamics

What can go wrong with dynamics randomization?

• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real

domain
• Learning to adapt the dynamics of the dymulator to match the real

domain
• Learning not from pixels but rather from label maps-> semantic maps

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level

dynamics are very different between Sim and REAL

What has shown to work

Adapting the source domain distribution

Sample sets of simulation parameters from a sampling distribution S.
Posterior of parameters p_i:

Fit a Gaussian model over simulator parameters based on posterior
weights of the samples

The more probable is an observed target state-action trajectory, the more
probable the simulation model

Source Distribution Adaptation

Adapting simulation to the real world

https://sites.google.com/view/simopt

https://sites.google.com/view/simopt

• Domain randomization (dynamics, visuals)
• Learning to adapt the textures of the simulator to match the real

domain
• Learning to adapt the dynamics of the dymulator to match the real

domain
• Learning not from pixels but rather from label maps-> semantic maps

between simulation and real world are closer than textures
• Learning higher level policies, not low-level controllers, as the low level

dynamics are very different between Sim and REAL

What has shown to work

Idea: the driving policy is not directly exposed to raw perceptual input or low-
level vehicle dynamics.

Main idea
Pixels to steering wheel mapping is not SIM2REAL transferable: image textures
and car dynamics mismatch

Instead: label maps to waypoint mapping is better SIM2REAL transferable:
label maps and waypoints are similar across SIM and REAL. A low-level
controller will take the car from waypoint to waypoint in the real world

We train policies via behaviour cloning (standard regression loss) in
Town1/ Weather1 dataset, and evaluate them on all four.

Train/Test

