
Maximum Entropy Reinforcement
Learning

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

CMU 10-403

RL objective

π* = arg max
π

𝔼π [∑
t

R(st, at)]

π* = arg max
π

𝔼(st,at)∼ρπ [∑
t

R(st, at)]

MaxEntRL objective

π* = arg max
π

𝔼π

T

∑
t=1

R(st, at)

reward

+α H(π(⋅ |st))

entropy

Why?
• Better exploration
• Learning alternative ways of accomplishing the task
• Better generalization, e.g., in the presence of obstacles a stochastic

policy may still succeed.

Promoting stochastic policies

Principle of Maximum Entropy

 Reinforcement Learning with Deep Energy-Based Policies,Haarnoja et al.

Policies that generate similar rewards, should be equally probable. We do not
want to commit.

Why?
• Better exploration
• Learning alternative ways of accomplishing the task
• Better generalization, e.g., in the presence of obstacles a stochastic

policy may still succeed.

dθ ← dθ + ∇θ′�log π(ai |si; θ′�)(R − V(si; θ′�v)+β ∇θ′�H(π(st; θ′�)))

Mnih et al., Asynchronous Methods for Deep Reinforcement Learning

“We also found that adding the entropy of the policy π to the objective function improved exploration by
discouraging premature convergence to suboptimal deterministic policies. This technique was originally
proposed by (Williams & Peng, 1991)”

We have seen this before.

MaxEntRL objective

π* = arg max
π

𝔼π

T

∑
t=1

R(st, at)

reward

+α H(π(⋅ |st))

entropy

How can we maximize such an objective?

Promoting stochastic policies

qπ(s, a) = r(s, a) + γ ∑
s′�∈𝒮

T(s′�|s, a) ∑
a′�∈𝒜

π(a′�|s′�)qπ(s′�, a′�)

Recall:Back-up Diagrams

Back-up Diagrams for MaxEnt Objective

H(π(⋅ |s′ �)) = − 𝔼a log π(a′�|s′�)

Back-up Diagrams for MaxEnt Objective

−log π(a′ �|s′�)

qπ(s, a) = r(s, a) + ∑
a′ �,s′�

p(s′�, r |s, a′�)(qπ(s′�, a′�)−log(π(a′�|s′�))

qπ(s, a) = r(s, a) + γ ∑
s′�∈𝒮

T(s′�|s, a) ∑
a′�∈𝒜

π(a′�|s′�)(qπ(s′�, a′�)−log(π(a′�|s′�)))

(Soft) policy evaluation

Q(st, at) ← r(st, at) + γ𝔼st+1,at+1
[Q(st+1, at+1 |st+1)]

Bellman backup update operator:

qπ(s, a) = r(s, a) + ∑
a′ �,s′�

T(s′�|s, a′�)(qπ(s′�, a′�)−log(π(a′�|s′ �)))
Soft Bellman backup equation:

Bellman backup equation:

qπ(s, a) = r(s, a) + γ ∑
s′�∈𝒮

T(s′�|s, a) ∑
a′�∈𝒜

π(a′�|s′�)qπ(s′�, a′�)

Q(st, at) ← r(st, at) + γ𝔼st+1,at+1 [Q(st+1, at+1)−log(π(at+1 |st+1))]
Soft Bellman backup update operator:

Soft Bellman backup update operator is a contraction

Q(st, at) ← r(st, at) + γ𝔼st+1,at+1 [Q(st+1, at+1)−log(π(at+1 |st+1))]

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[𝔼at+1∼π[Q(st+1, at+1) − log(π(at+1 |st+1))]]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρ𝔼at+1∼π[−log π(at+1 |st+1)]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρH(π(⋅ |st+1))

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[𝔼at+1∼π[Q(st+1, at+1) − log π(at+1 |st+1)]]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρ𝔼at+1∼π[−log π(at+1 |st+1)]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρH(π(⋅ |st+1))

rsoft(st, at) = r(st, at) + γ𝔼st+1∼ρH(π(⋅ |st+1))

Rewrite the reward as:

Then we get the old Bellman operator, which we know is a contraction

Soft Bellman backup update operator
Q(st, at) ← r(st, at) + γ𝔼st+1,at+1 [Q(st+1, at+1)−α log π(at+1 |st+1)]]

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[𝔼at+1∼π[Q(st+1, at+1) − α log π(at+1 |st+1)]]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γα𝔼st+1∼ρ𝔼at+1∼π[−log π(at+1 |st+1)]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γα𝔼st+1∼ρH(π(⋅ |st+1))

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[𝔼at+1∼π[Q(st+1, at+1) − log π(at+1 |st+1)]]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρ𝔼at+1∼π[−log π(at+1 |st+1)]
← r(st, at) + γ𝔼st+1∼ρ,at+1∼πQ(st+1, at+1) + γ𝔼st+1∼ρH(π(⋅ |st+1))

Q(st, at) ← r(st, at) + γ𝔼st+1∼ρ[V(st+1)]
We know that:

V(st) = 𝔼at∼π[Q(st, at) − α log π(at |st)]

Which means that:

Policy iteration iterates between two steps:
1. Policy evaluation: Fix policy, apply Bellman backup operator till convergence

4. Policy improvement: Update the policy vk+1(s) = ∑
a

π(a |s)∑
s′�,r

p(s′�, r |s, a)[r + γvk(s′�)]

Q(st, at) ← rπ(st, at) + γ𝔼st+1∼ρ,at+1∼π[Q(st+1, at+1)]

qπ(s, a) ← r(s, a) + γ𝔼s′�,a′�qπ(s′�, a′�)

Review: Policy Iteration (unknown dynamics)

Soft Policy Iteration

Soft policy iteration iterates between two steps:
1. Soft policy evaluation: Fix policy, apply Bellman backup operator till

convergence

2. Soft policy improvement: Update the policy:

π′� = arg min
πk∈Π

DKL (πk(⋅ |st) | |
exp(Qπ(st, ⋅))

Zπ(st))

This converges to qπ

Leads to a sequence of policies with monotonically increasing soft q values

qπ(s, a) = r(s, a) + 𝔼s′�,a′ �(qπ(s′�, a′�)−α log(π(a′�|s′�)))

This so far concerns tabular methods. Next we will use function approximations
for policy and action values

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

Review: Policy Improvement theorem for deterministic
policies

Let π, π′� be any pair of determinstic policies such that, for all s ∈ 𝒮 :
qπ(s, π′�(s)) ≥ vπ(s) .

Then π′� must be as good as or better than π, that is:
vπ′�(s)≥vπ(s)

Review: Policy Improvement theorem for deterministic
policies

Let π, π′ � be any pair of determinstic policies such that, for all s ∈ 𝒮 :
qπ(s, π′�(s)) ≥ vπ(s) .

Then π′� must be as good as or better than π, that is:
vπ′�(s)≥vπ(s)

Review: Policy Improvement theorem for deterministic
policies

Let π, π′ � be any pair of determinstic policies such that, for all s ∈ 𝒮 :
qπ(s, π′�(s)) ≥ vπ(s) .

Then π′� must be as good as or better than π, that is:
vπ′�(s)≥vπ(s)

π′� = arg min
πk∈Π

DKL (πk(⋅ |st) | |
exp(Qπ(st, ⋅))

Zπ(st))

SoftMax

Soft Policy Iteration - Approximation

Use function approximations for policy and action value functions:

Qθ(st)πϕ(at |st)

Soft Policy Iteration - Approximation

1. Learning the state-action value function:

Use function approximations for policy and action value functions:

Qθ(st)πϕ(at |st)

Semi-gradient method:

Soft Policy Iteration - Approximation

3. Learning the policy:

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))
Zθ(st)

The variable w.r.t. which we take gradient parametrizes the distribution
inside the expectation.

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼a∼πϕ(⋅|st) log
πϕ(⋅ |st)

exp(Qπ(st, ⋅))
Zπ(st)

Zθ(st) = ∫𝒜
exp(Qθ(st, at))dat

independent of \phi

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D,ϵ∼𝒩(0,I) log
πϕ(at |st)

exp(Qθ(st, at))

Use function approximations for policy and action value functions:

Qθ(st)πϕ(at |st)

Soft Policy Iteration - Approximation

3. Learning the policy:

Reparametrization trick. The policy becomes a deterministic function of
Gaussian random variables (fixed Gaussian distribution):

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼a∼πϕ(⋅|st) log
πϕ(⋅ |st)

exp(Qπ(st, ⋅))
Zπ(st)

at = fϕ(st, ϵ) = μϕ(st) + ϵΣϕ(st), ϵ ∼ 𝒩(0,I)

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D𝔼at∼πϕ(a|st) log
πϕ(at |st)

exp(Qθ(st, at))

∇ϕJπ(ϕ) = ∇ϕ𝔼st∈D,ϵ∼𝒩(0,I) log
πϕ(at |st)

exp(Qθ(st, at))

Use function approximations for policy and action value functions:

Qθ(st)πϕ(at |st)

Composability of Maximum Entropy Policies

Composable Deep Reinforcement Learning for Robotic Manipulation, Haarnoja et al.

Imagine we want to satisfy two objectives at the same time, e.g., pick an
object up while avoiding an obstacle. We would learn a policy to maximize
the addition of the the corresponding reward functions:

MaxEnt policies permit to obtain the resulting policy’s optimal Q by simply
adding the constituent Qs:

We can theoretically bound the suboptimality of the resulting policy w.r.t.
the policy trained under the addition of rewards. We cannot do this for
deterministic policies.

rC(s, a) =
1
C

C

∑
i=1

ri(s, a)

Q*C(s, a) ≈
1
C

C

∑
i=1

Q*i (s, a)

https://www.youtube.com/watch?time_continue=82&v=FmMPHL3TcrE

https://www.youtube.com/watch?time_continue=82&v=FmMPHL3TcrE

