Deep Reinforcement Learning and Control

Maximum Entropy Reinforcement Learning

CMU 10-403

Katerina Fragkiadaki
RL objective

\[\pi^* = \arg \max \mathbb{E}_\pi \left[\sum_t R(s_t, a_t) \right] \]

\[\pi^* = \arg \max \mathbb{E}_{(s_t, a_t) \sim \rho_\pi} \left[\sum_t R(s_t, a_t) \right] \]
MaxEntRL objective

Promoting stochastic policies

$$\pi^* = \arg \max_{\pi} \mathbb{E}_\pi \left[\sum_{t=1}^{T} R(s_t, a_t) + \alpha H(\pi(\cdot|s_t)) \right]$$

Why?

• Better exploration
• Learning alternative ways of accomplishing the task
• Better generalization, e.g., in the presence of obstacles a stochastic policy may still succeed.
Principle of Maximum Entropy

Policies that generate similar rewards, should be equally probable. We do not want to commit.

Why?
- Better exploration
- Learning alternative ways of accomplishing the task
- Better generalization, e.g., in the presence of obstacles a stochastic policy may still succeed.
We have seen this before.

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

```
// Assume global shared parameter vectors \( \theta \) and \( \theta_v \) and global shared counter \( T = 0 \)
// Assume thread-specific parameter vectors \( \theta' \) and \( \theta'_v \)
Initialize thread step counter \( t \leftarrow 1 \)
repeat
    Reset gradients: \( d\theta \leftarrow 0 \) and \( d\theta_v \leftarrow 0 \).
    Synchronize thread-specific parameters \( \theta' = \theta \) and \( \theta'_v = \theta_v \)
    \( t_{start} = t \)
    Get state \( s_t \)
    repeat
        Perform \( a_t \) according to policy \( \pi(a_t|s_t; \theta') \)
        Receive reward \( r_t \) and new state \( s_{t+1} \)
        \( t \leftarrow t + 1 \)
        \( T \leftarrow T + 1 \)
    until terminal \( s_t \) or \( t - t_{start} == t_{max} \)
    \( R = \begin{cases} 
    0 & \text{for terminal } s_t \\
    V(s_t, \theta'_v) & \text{for non-terminal } s_t
    \end{cases} \) // Bootstrap from last state
    for \( i \in \{t - 1, \ldots, t_{start}\} \) do
        \( R \leftarrow r_i + \gamma R \)
        Accumulate gradients wrt \( \theta' \): \( d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i; \theta')(R - V(s_i; \theta'_v) + \beta \nabla_{\theta'} H(\pi(s_i; \theta'))) \)
        Accumulate gradients wrt \( \theta'_v \): \( d\theta_v \leftarrow d\theta_v + \partial_i (R - V(s_i; \theta'_v))^2 / \partial\theta'_v \)
    end for
    Perform asynchronous update of \( \theta \) using \( d\theta \) and of \( \theta_v \) using \( d\theta_v \).
    until \( T > T_{max} \)
```

“We also found that adding the entropy of the policy \(\pi \) to the objective function improved exploration by discouraging premature convergence to suboptimal deterministic policies. This technique was originally proposed by (Williams & Peng, 1991)”
MaxEntRL objective

Promoting stochastic policies

$$\pi^* = \arg \max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} R(s_t, a_t) + \alpha H(\pi(\cdot | s_t)) \right]$$

How can we maximize such an objective?
Recall: Back-up Diagrams

\[q_\pi(s, a) \leftarrow s, a \]

\[q_\pi(s', a') \leftarrow a' \]

\[
q_\pi(s, a) = r(s, a) + \gamma \sum_{s' \in S} T(s' \mid s, a) \sum_{a' \in A} \pi(a' \mid s') q_\pi(s', a')
\]
Back-up Diagrams for MaxEnt Objective

\[H(\pi(\cdot | s')) = -\mathbb{E}_a \log \pi(a' | s') \]

\[q_{\pi}(s, a) \leftrightarrow s, a \]

\[q_{\pi}(s', a') \leftrightarrow a' \]
Back-up Diagrams for MaxEnt Objective

\[q_\pi(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} T(s' | s, a) \sum_{a' \in \mathcal{A}} \pi(a' | s') (q_\pi(s', a') - \log(\pi(a' | s'))) \]
(Soft) policy evaluation

Bellman backup equation:

\[q_\pi(s, a) = r(s, a) + \gamma \sum_{s' \in S} T(s' | s, a) \sum_{a' \in A} \pi(a' | s') q_\pi(s', a') \]

Soft Bellman backup equation:

\[q_\pi(s, a) = r(s, a) + \sum_{a', s'} T(s' | s, a') \left(q_\pi(s', a') - \log(\pi(a' | s')) \right) \]

Bellman backup update operator:

\[Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}, a_{t+1}} [Q(s_{t+1}, a_{t+1} | s_{t+1})] \]

Soft Bellman backup update operator:

\[Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}, a_{t+1}} [Q(s_{t+1}, a_{t+1}) - \log(\pi(a_{t+1} | s_{t+1}))] \]
Soft Bellman backup update operator is a contraction

\[Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}, a_{t+1}} \left[Q(s_{t+1}, a_{t+1}) - \log(\pi(a_{t+1} | s_{t+1})) \right] \]

\[Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho} \mathbb{E}_{a_{t+1} \sim \pi} [Q(s_{t+1}, a_{t+1}) - \log(\pi(a_{t+1} | s_{t+1}))] \]

\[\leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho} \mathbb{E}_{a_{t+1} \sim \pi} Q(s_{t+1}, a_{t+1}) + \gamma \mathbb{E}_{s_{t+1} \sim \rho} \mathbb{E}_{a_{t+1} \sim \pi} [-\log \pi(a_{t+1} | s_{t+1})] \]

\[\leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho} \mathbb{E}_{a_{t+1} \sim \pi} Q(s_{t+1}, a_{t+1}) + \gamma \mathbb{E}_{s_{t+1} \sim \rho} H(\pi(\cdot | s_{t+1})) \]

Rewrite the reward as:

\[r_{soft}(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho} H(\pi(\cdot | s_{t+1})) \]

Then we get the old Bellman operator, which we know is a contraction.
Soft Bellman backup update operator

\[
Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1}, a_{t+1}} \left[Q(s_{t+1}, a_{t+1}) - \alpha \log \pi(a_{t+1} | s_{t+1}) \right]
\]

\[
Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho} \left[\mathbb{E}_{a_{t+1} \sim \pi} \left[Q(s_{t+1}, a_{t+1}) - \alpha \log \pi(a_{t+1} | s_{t+1}) \right] \right]
\]

\[
\leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho, a_{t+1} \sim \pi} Q(s_{t+1}, a_{t+1}) + \gamma \alpha \mathbb{E}_{s_{t+1} \sim \rho} \mathbb{E}_{a_{t+1} \sim \pi} \left[-\log \pi(a_{t+1} | s_{t+1}) \right]
\]

\[
\leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho, a_{t+1} \sim \pi} Q(s_{t+1}, a_{t+1}) + \gamma \alpha \mathbb{E}_{s_{t+1} \sim \rho} H(\pi(\cdot | s_{t+1}))
\]

We know that:

\[
Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho} [V(s_{t+1})]
\]

Which means that:

\[
V(s_t) = \mathbb{E}_{a_t \sim \pi} [Q(s_t, a_t) - \alpha \log \pi(a_t | s_t)]
\]
Policy iteration iterates between two steps:

1. Policy evaluation: Fix policy, apply Bellman backup operator till convergence

\[q_{\pi}(s, a) \leftarrow r(s, a) + \gamma \mathbb{E}_{s', a'} q_{\pi}(s', a') \]

4. Policy improvement: Update the policy

\[\pi'(s) \; \overset{\cdot}{=} \; \arg \max_a q_{\pi}(s, a) \]
Soft Policy Iteration

Soft policy iteration iterates between two steps:

1. **Soft policy evaluation**: Fix policy, apply Bellman backup operator till convergence
 \[
 q_\pi(s, a) = r(s, a) + \mathbb{E}_{s',a'} \left(q_\pi(s', a') - \alpha \log(\pi(a' | s')) \right)
 \]
 This converges to \(Q_\pi \)

2. **Soft policy improvement**: Update the policy:
 \[
 \pi' = \arg \min_{\pi_k \in \Pi} D_{KL} \left(\pi_k(\cdot | s_t) \| \frac{\exp(\mathbb{E}Q_\pi(s_t, \cdot))}{Z_\pi(s_t)} \right)
 \]
 Leads to a sequence of policies with monotonically increasing soft q values

This so far concerns tabular methods. Next we will use function approximations for policy and action values
Let π, π' be any pair of deterministic policies such that, for all $s \in S$:

$$q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s).$$

Then π' must be as good as or better than π, that is:

$$v_{\pi'}(s) \geq v_{\pi}(s).$$
Let π, π' be any pair of deterministic policies such that, for all $s \in S$:

$$q_\pi(s, \pi'(s)) \geq v_\pi(s).$$

Then π' must be as good as or better than π, that is:

$$v_{\pi'}(s) \geq v_\pi(s).$$

\begin{align*}
v_\pi(s) &\leq q_\pi(s, \pi'(s)) \\
&= \mathbb{E}[R_{t+1} + \gamma v_\pi(S_{t+1}) \mid S_t = s, A_t = \pi'(s)] \tag{by (4.6)} \\
&= \mathbb{E}_\pi'[R_{t+1} + \gamma v_\pi(S_{t+1}) \mid S_t = s] \\
&\leq \mathbb{E}_\pi'[R_{t+1} + \gamma q_\pi(S_{t+1}, \pi'(S_{t+1})) \mid S_t = s] \tag{by (4.7)} \\
&= \mathbb{E}_\pi'[R_{t+1} + \gamma \mathbb{E}_\pi'[R_{t+2} + \gamma v_\pi(S_{t+2}) \mid S_{t+1}, A_{t+1} = \pi'(S_{t+1})] \mid S_t = s] \\
&= \mathbb{E}_\pi'[R_{t+1} + \gamma R_{t+2} + \gamma^2 v_\pi(S_{t+2}) \mid S_t = s] \\
&\leq \mathbb{E}_\pi'[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 v_\pi(S_{t+3}) \mid S_t = s] \\
&\vdots \\
&\leq \mathbb{E}_\pi'[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \mid S_t = s] \\
&= v_{\pi'}(s).
\end{align*}
Review: Policy Improvement theorem for deterministic policies

Let π, π' be any pair of deterministic policies such that, for all $s \in \mathcal{S}$:

$$q_\pi(s, \pi'(s)) \geq v_\pi(s).$$

Then π' must be as good as or better than π, that is:

$$v_{\pi'}(s) \geq v_\pi(s).$$

$$\pi'(s) = \arg\max_a q_\pi(s, a)$$

$$= \arg\max_a \mathbb{E}[R_{t+1} + \gamma v_\pi(S_{t+1}) | S_t = s, A_t = a]$$

$$= \arg\max_a \sum_{s', r} p(s', r | s, a) \left[r + \gamma v_\pi(s') \right],$$

$$\pi' = \arg\min_{\pi_k \in \Pi} D_{KL} \left(\pi_k(\cdot | s_t) \parallel \frac{\exp(Q_\pi(s_t, \cdot))}{Z_\pi(s_t)} \right)$$
SoftMax

\[
S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}
\]

<table>
<thead>
<tr>
<th>LOGITS SCORES</th>
<th>PROBABILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(p)</td>
</tr>
<tr>
<td>2.0</td>
<td>(p = 0.7)</td>
</tr>
<tr>
<td>1.0</td>
<td>(p = 0.2)</td>
</tr>
<tr>
<td>0.1</td>
<td>(p = 0.1)</td>
</tr>
</tbody>
</table>
Use function approximations for policy and action value functions:

$$\pi_\phi(a_t | s_t) \quad Q_\theta(s_t)$$
Use function approximations for policy and action value functions:

\[\pi_\phi (a_t | s_t) \quad Q_\theta (s_t) \]

1. Learning the state-action value function:

\[
J_Q(\theta) = \mathbb{E}_{(s_t,a_t) \sim D} \left[\frac{1}{2} \left(Q_\theta (s_t, a_t) - \hat{Q}(s_t, a_t) \right)^2 \right]
\]

Semi-gradient method:

\[
\nabla_\theta J_Q(\theta) = \nabla_\theta Q_\theta (a_t, s_t) (Q_\theta (s_t, a_t) - (r(s_t, a_t) + \gamma Q_\theta (s_{t+1}, a_{t+1}) - \alpha \log (\pi_\phi (a_{t+1} | s_{t+1}))))
\]
Soft Policy Iteration - Approximation

Use function approximations for policy and action value functions:

\[\pi_\phi(a_t | s_t) \quad Q_\theta(s_t) \]

3. Learning the policy:

\[J_\pi(\phi) = \mathbb{E}_{s_t \sim D} \left[\text{D}_{\text{KL}} \left(\pi_\phi(\cdot | s_t) \middle\| \frac{\exp(Q_\theta(s_t, \cdot))}{Z_\theta(s_t)} \right) \right] \]

\[\nabla_\phi J_\pi(\phi) = \nabla_\phi \mathbb{E}_{s_t \in D} \mathbb{E}_{a_t \sim \pi_\phi(a_t | s_t)} \log \frac{\pi_\phi(a_t | s_t)}{\frac{\exp(Q_\theta(s_t, a_t))}{Z_\theta(s_t)}} \]

\[\nabla_\phi J_\pi(\phi) = \nabla_\phi \mathbb{E}_{s_t \in D, e \sim \mathcal{N}(0, I)} \log \frac{\pi_\phi(a_t | s_t)}{\exp(Q_\theta(s_t, a_t))} \]

\[Z_\theta(s_t) = \int_{\mathcal{A}} \exp(Q_\theta(s_t, a_t))da_t \]

The variable w.r.t. which we take gradient parametrizes the distribution inside the expectation.
Soft Policy Iteration - Approximation

Use function approximations for policy and action value functions:

\[\pi_{\phi}(a_t | s_t) \quad Q_\theta(s_t) \]

3. Learning the policy:

\[
\nabla_{\phi} J_\pi(\phi) = \nabla_{\phi} \mathbb{E}_{s_t \in D} \mathbb{E}_{a_t \sim \pi_{\phi}(a|s_t)} \log \frac{\pi_{\phi}(a_t | s_t)}{\exp(Q_\theta(s_t, a_t))}
\]

Reparametrization trick. The policy becomes a deterministic function of Gaussian random variables (fixed Gaussian distribution):

\[
a_t = f_{\phi}(s_t, \epsilon) = \mu_{\phi}(s_t) + \epsilon \Sigma_{\phi}(s_t), \quad \epsilon \sim \mathcal{N}(0,I)
\]

\[
\nabla_{\phi} J_\pi(\phi) = \nabla_{\phi} \mathbb{E}_{s_t \in D, \epsilon \sim \mathcal{N}(0,I)} \log \frac{\pi_{\phi}(a_t | s_t)}{\exp(Q_\theta(s_t, a_t))}
\]
Imagine we want to satisfy two objectives at the same time, e.g., pick an object up while avoiding an obstacle. We would learn a policy to maximize the addition of the corresponding reward functions:

$$r^C(s, a) = \frac{1}{C} \sum_{i=1}^{C} r_i(s, a)$$

MaxEnt policies permit to obtain the resulting policy’s optimal Q by simply adding the constituent Qs:

$$Q^*_C(s, a) \approx \frac{1}{C} \sum_{i=1}^{C} Q^*_i(s, a)$$

We can theoretically bound the suboptimality of the resulting policy w.r.t. the policy trained under the addition of rewards. We cannot do this for deterministic policies.
Composable Deep Reinforcement Learning for Robotic Manipulation

Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, and Sergey Levine

Berkeley Artificial Intelligence Research
UC Berkeley