
Imitation Learning 

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Spring 2019, CMU 10-403



Reinforcement learning
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     Agent observes state at step t:    St ∈
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Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Limitations of Learning by Interaction
• The agent should have the chance to try (and fail) MANY times

• This is impossible when safety is a concern: we cannot afford to fail

• This is also quite impossible in general in real life where each 
interaction takes time (in contrast to simulation)

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010 

Crusher robot



Imitation Learning (a.k.a. Learning from Demonstrations)

kinesthetic imitation

• The teacher takes over the end-
effectors of the agent.

• Demonstrated actions can be 
imitated directly (cloned) 

• A.k.a. behavior cloning

The actions of the teacher need to be 
inferred from visual sensory input and 
mapped to the end-effectors to the 
agent. 
Two challenges:
1) visual understanding
2) action mapping, especially when 

the agent and the teacher do not 
have the same action space

visual imitation

we will come back to this in a later lecture this lecture!



Imitating Controllers

kinesthetic imitation

• The teacher takes over the end-
effectors of the agent.

• Demonstrated actions can be 
imitated directly (cloned) 

• A.k.a. behavior cloning

The actions of the teacher need to be 
inferred from visual sensory input and 
mapped to the end-effectors to the 
agent. 
Two challenges:
1) visual understanding
2) action mapping, especially when 

the agent and the teacher do not 
have the same action space

visual imitation

We will come back to this in a later lecture this lecture!

• Experts do not need to be humans. 
• Machinery that we develop in this lecture can be used for imitating expert 

policies found through (easier) optimization in a constrained smaller part of 
the state space. 

• Imitation then means distilling knowledge of expert constrained policies into a 
general policy that can do well in all scenarios the simpler policies do well.



Notation

actions
states
rewards

at
st

p(st+1 |st, at)

utactions
states
costs

xt
c(xt, ut)

dynamics
rt

p(xt+1 |xt, ut)
observations ot

dynamics

Diagram from Sergey Levine



Imitation learning VS Sequence labelling

Training data of the form:

1. run away
2. ignore
3. pet

Terminology & notation

Imitation learning

1. run away
2. ignore
3. pet

Terminology & notation

Training data:

o1
1 , u1

1 , o1
2 , u 1

2 , o1
3 , u1

3 , . . . .

o2
1 , u2

1 , o2
2 , u 2

2 , o2
3 , u2

3 , . . . .

o3
1 , u3

1 , o3
2 , u3

2 , o3
3 , u3

3 , . . . .Sequence labelling

y1 y2 y3

y: which product was purchased if any
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Action interdependence in imitation learning: the actions we predict 
will influence the data we will see next, and thus, our future 
predictions. 
Label  interdependence is present in any structured prediction task, 
e.g, text generation: words we predict influence words we need to 
predict further down the sentence…



Imitation Learning for Driving

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Driving policy: a mapping from observations to steering wheel angles 

End to End Learning for Self-Driving Cars, Bojarski et al. 2016



Imitation Learning as Supervised Learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

• Assume actions in the expert trajectories are i.i.d.
• Train a function approximator to map observations to actions at each 

time step of the trajectory.

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

Driving policy: a mapping from observations to steering wheel angles 



What can go wrong?
• Compounding errors

Fix: data augmentation
• Stochastic expert actions

Fix: stochastic latent variable models, action discretiation, gaussian mixture networks
• Non-markovian observations

Fix: observation concatenation or recurrent models

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning
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Imitation Learning
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Independent in time errors

error at time t with probability ε
E[Total errors] ≲ εT  

This means that at each time step t, the agent wakes up on a state drawn 
from the data distribution of the expert trajectories, and executes an action 



Compounding Errors

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011 

error at time t with probability ε

E[Total errors] ≲ ε(T + (T-1) + (T-2) + …+ 1) ∝ εT2 

This means that at each time step t, the agent wakes up on the state that 
resulted from executing the action the learned policy suggested in the 
previous time step. 



Data Distribution Mismatch!
4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on 
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

p⇡⇤(ot) 6= p⇡✓ (ot)



Data Distribution Mismatch!

supervised learning supervised learning + 
control (NAIVE)

train (x,y) ~ D s ~ dπ*

test (x,y) ~ D s ~ dπ

SL succeeds when training and test data distributions match, that is a 
fundamental assumption.



Change              using demonstration augmentation!! 
Add examples in expert demonstration trajectories to 
cover the states/observations points where the agent 
will land when trying out its own policy. How?

• Synthetically in simulation or by clever hardware

• Interactively with experts in the loop (DAGGER)

p⇡⇤(ot)

Solution: data augmentations



Change  the training data distribution             using demonstration 
augmentation: add examples in expert demonstration trajectories to 
cover the states/observations where the agent will land when trying 
out its own policy.

Solution: data augmentations

p⇡⇤(ot)

supervised learning supervised learning + 
control (NAIVE)

train (x,y) ~ D s ~ dπ*

test (x,y) ~ D s ~ dπ



Demonstration Augmentation: ALVINN 1989

“In addition, the network must not solely be shown examples of accurate driving, but also how 
to recover (i.e. return to the road center) once a mistake has been made. Partial initial training 
on a variety of simulated road images should help eliminate these difficulties and facilitate 
better performance.”
ALVINN: An autonomous Land vehicle in a neural Network”, Pomerleau 1989

• Using graphics simulator for road images and corresponding steering 
angle ground-truth

• Online adaptation to human driver steering angle control
• 3 layers, fully connected layers, very low resolution input from camera

Road follower



Demonstration Augmentation:  NVIDIA 2016

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous 
Land Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver 
is not sufficient. The network must learn how to recover from mistakes. …” 
End to End Learning for Self-Driving Cars , Bojarski et al. 2016

Why did that work?

Bojarski et al. ‘16, NVIDIA

Additional, left and right 
cameras with automatic 
grant-truth labels to 
recover from mistakes



Data Augmentation (2): NVIDIA 2016

add Nvidia video

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land Vehicle in a Neural 
Network (ALVINN) system. Training with data from only the human driver is not sufficient. The network must learn how to 
recover from mistakes. …”, End to End Learning for Self-Driving Cars , Bojarski et al. 2016



Data Augmentation (3): Trails 2015

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots Giusti et al.



Data Augmentation (3): Trails 2015

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots Giusti et al.



Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer 
by (asking uman experts to provide) labelling additional data points resulting 
from applying the current policy

DAGGER (in simulation)

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69

Execute current policy and Query Expert 
New Data 

Supervised Learning 

All previous data 
Aggregate 
Dataset 

Steering 
from expert 

New 
Policy 

Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.

Test 
Execu*on 

Collect 
Data 

No‐Regret 
Online Learner 

Expert 

Learned  
Policy Done? 

yes  no 
iπ̂

Best 
Policy 

iπ̂

e.g. Gradient 
Descent 

Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use �1 = 1 so that we do

not have to specify an initial policy ⇡̂1 before getting data from the expert’s behavior.

Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1
N

P
N

i=1 �i ! 0 as N ! 1. The simple, parameter-free version of the

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011 
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Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1
N

P
N

i=1 �i ! 0 as N ! 1. The simple, parameter-free version of the

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011 

Problems:

⇡✓(ut|ot)

ut

⇡✓(ut|ot) D⇡ = {o1, ..., oM}

D⇡

D⇡⇤ = {o1, u1, ..., oN , uN}

D⇡⇤  D⇡⇤ [D⇡

• execute an unsafe/partially trained policy
• repeatedly query the expert



Application on drones: given RGB from the drone camera predict 
steering angles

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013 

DAGGER (on a real platform)



Application on drones : given RGB from the drone camera predict 
steering angle
Caveats:
1. It is hard for the expert to provide the right magnitude for the turn 

without feedback of his own actions! Solution: provide him with visual 
feedback

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013 

DAGGER (on a real platform)



Caveats:

1. Is hard for the expert to provide the right magnitude for the turn 
without feedback of his own actions! Solution: provide him with his 
visual feedback

2. The expert’s reaction time to the drone’s behavior is large, this 
causes imperfect actions to be commanded. Solution: play-back in 
slow motion offline and record their actions.

3. Executing an imperfect policy causes accidents, crashes into 
obstacles. Solution: safety measures which make again the data 
distribution matching imperfect between train and test, but good 
enough..

DAGGER (on a real platform)

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013 



What can go wrong?
• Compounding errors

Fix: data augmentation
• Stochastic expert actions

Fix: stochastic latent variable models, action discretiation, gaussian mixture networks
• Non-markovian observations

Fix: observation concatenation or recurrent models

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning



Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior

behavior depends only 
on current observation

If we see the same thing 
twice, we do the same thing 
twice, regardless of what 
happened before

Often very unnatural for 
human demonstrators

behavior depends on 
all past observations

Non-markovian observationsImitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

utut



How can we use the whole history?

variable number of frames, 
too many weights

Fix 1: concatenate observations



How can we use the whole history?

RNN state

RNN state

RNN state

shared weights

Typically, LSTM cells work better here

Fix 2: use recurrent networks

Diagram from Sergey Levine



Recurrent Neural Networks (RNNs)
• RNNs tie the weights at each time step
• Condition the neural network on all previous inputs
• In principle, any interdependencies can be modeled across time 

steps. 
• In practice, limitations from SGD training, capacity, initialization etc.

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Diagram from Richard Socher



Recurrent Neural Network (single hidden layer)

• Given list of vectors:
• At a single time step:

Recurrent	Neural	Network	language	model

4/21/16Richard	Socher10

Given	list	of	word	vectors:

At	a	single	time	step:

xt ht

ßà

x1, ..., xt�1, xt, xt+1, ..., xT

ht = �
�
W (hh)ht�1 +W (hx)x[t]

�

ŷt = softmax
�
W (S)ht

�

(in case of discrete labels)

Diagram from Richard Socher



Recurrent Neural Networks
Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

For sequence labelling problems, actions of the labelling policies are     , e.g.,   
part of speech tags

For sequence generation, actions of the labelling policies are                   , e.g., 
word in answer generation

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

yt

yt = xt+1
P̂ (xt+1 = vj |xt, ..., x1) = ŷt,j



How can we use the whole history?

RNN state

RNN state

RNN state

shared weights

Typically, LSTM cells work better here

Fix 2: use recurrent networks

Diagram rom Sergey Levine



What can go wrong?
• Compounding errors

Fix: data augmentation
• Stochastic expert actions

Fix: stochastic latent variable models, action discretiation, gaussian mixture networks
• Non-markovian observations

Fix: observation concatenation or recurrent modelsImitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior 1. Output mixture of 

Gaussians
2. Latent variable models
3. Autoregressive 

discretization



Regression fails under multimodality

Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior 1. Output mixture of 

Gaussians
2. Latent variable models
3. Autoregressive 

discretization

The answer that minimizes the mean square error is the average 
which is not a valid prediction

groundtruth streering angles
predicted streering angles



Stochastic expert actions: Fixes
• Discretize the action space and use a classifier (e.g., softmax output 

and cross-entropy loss)
• Use gaussian mixture model as an output layer, mixture components 

weights, means and variances are parametrized at the output of a 
neural net, minimize GMM loss, (e.g., Handwriting generation Graves 
2013)

• Stochastic neural networks (later lecture)

Why might we fail to fit the expert?

1. Non-Markovian behavior
2. Multimodal behavior 1. Output mixture of 

Gaussians
2. Latent variable models
3. Autoregressive 

discretization

Diagram from Sergey Levine



Stochastic expert actions: Fixes
• Discretize the action space and use a classifier (e.g., softmax output 

and cross-entropy loss)
• Use gaussian mixture model as an output layer, mixture components 

weights, means and variances are parametrized at the output of a 
neural net, minimize GMM loss, (e.g., Handwriting generation Graves 
2013)

• Stochastic neural networks (later lecture)

Why might we fail to fit the expert?

1. Output mixture of 
Gaussians

2. Latent variable models
3. Autoregressive 

discretization

Diagram from Sergey Levine



Stochastic expert actions: Fixes
• Discretize the action space and use a classifier (e.g., softmax output 

and cross-entropy loss)
• Use gaussian mixture model as an output layer, mixture components 

weights, means and variances are parametrized at the output of a 
neural net, minimize GMM loss, (e.g., Handwriting generation Graves 
2013)

• Stochastic neural networks (later lecture)

Why might we fail to fit the expert?

1. Output mixture of 
Gaussians

2. Latent variable models
3. Autoregressive 

discretization

Look up some of these:
• Conditional variational autoencoder
• Normalizing flow/realNVP
• Stein variational gradient descent

Diagram from Sergey Levine



Structured prediction
Structured prediction: a learner makes predictions over a set of interdependent 
output variables and observes a joint loss.

Sequence labeling

The monster ate  a   big sandwich

x = the monster ate the sandwich
y = Dt    Nn    Vb  Dt     Nn

x = Yesterday I traveled to Lille
y =     -    PER   -      -  LOC

i
m
a
g
e
 
c
r
e
d
i
t
:
 
R
i
c
h
a
r
d
 
P
a
d
g
e
t
t

NER (Name Entity Recognition)

Sequence labeling

The monster ate  a   big sandwich

x = the monster ate the sandwich
y = Dt    Nn    Vb  Dt     Nn

x = Yesterday I traveled to Lille
y =     -    PER   -      -  LOC

image cr edit: Ri chard Pa dgett

part-of-speech tagging

tracking

“A blue monster is eating a cookie”

captioning

Machine translationMachine translation

Few images from Hall Daume III



Recurrent Neural Networks

The regular training procedure of RNNs treat true labels      as actions 
while making forward passes.  Hence, the learning agent follows 
trajectories generated by the reference policy rather than the learned 
policy.  In other words, it learns:

However, our true goal is to learn a policy that minimizes error under 
its own induced state distribution:

Imitation Learning with Recurrent Neural Networks, Nyuyen 2016 

✓̂ = argmin
✓

Eh⇠d✓ [l✓(h)]

✓̂sup = argmin
✓

Eh⇠d⇡⇤ [l✓(h)]

yt



Mocap generation

noisenoise

decode1

lstm3

lstm2

lstm1

encode1

decode1

lstm3

lstm2

lstm1

encode1



DAGGER for sequence labelling/generation

Imitation Learning with Recurrent Neural Networks, Nyuyen 

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, Bengio(Samy) et al.

Q: what we be feeding the groundtruth x,y or the predicted x,y during training?

Teacher forcing



Mocap generation
• Right: no augmentation, using only ground-truth state input
• Left: augmentation by adding Gaussian noise to the state (not to the prediction)

When adding noise to the input, despite the per frame prediction error being 
larger, the long term prediction error is lower.

Learning human dynamics with recurrent neural networks, Fragkiadaki et al.



Case study: learning from virtual demonstrations 

Learning real manipulation tasks from virtual demonstrations using LSTM,  Rahmatizadeh et al 2016

• Two tasks considered: pick and place, move to desired pose
• State representation x: the poses of all the objects in the seen (rotations, translations) and the 

pose of the  end effector

• Output y: the desired next pose of the end effector

• Supervision: expert trajectories in the simulator

• Demonstation augmentation: consider multiple trajectories by subsampling in time the expert 
ones, and by translating in space the end effector



• Multimodality of actions-> GMM loss! 

• Predict mixture weights over a Gaussian Mixture Model at the output 
(alphas) and mean and variances for the mixture components.

Learning real manipulation tasks from virtual demonstrations using LSTM,  Rahmatizadeh et al 2016

Case study: learning from virtual demonstrations 



• Multimodality: predict mixture weights over a Gaussian Mixture 
Model at the output (alphas) and mean and variances for the 
mixture components. Minimize a GMM loss.

Learning real manipulation tasks from virtual demonstrations using LSTM,  Rahmatizadeh et al 2016

Case study: learning from virtual demonstrations 



Learning real manipulation tasks from virtual demonstrations using LSTM,  Rahmatizadeh et al 2016

Case study: learning from virtual demonstrations 



https://www.youtube.com/watch?v=9vYlIG2ozaM

Learning real manipulation tasks from virtual demonstrations using LSTM,  Rahmatizadeh et al 2016

Case study: learning from virtual demonstrations 


