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Reinforcement learning
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Agent and environment interact at discrete time steps: =0,1,2,3,...
Agent observes state at step t: S, €S
produces action at step t: A, € A(S,)
gets resulting reward: R, E R C R
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Limitations of Learning by Interaction

» The agent should have the chance to try (and fail) MANY times
 This is impossible when safety is a concern: we cannot afford to falil

» This is also quite impossible in general in real life where each
interaction takes time (in contrast to simulation)

Crusher robot




Imitation Leaming (a.k.a. Learning from Demonstrations)

visual imitation kinesthetic imitation

The actions of the teacher need to be

inferred from visual sensory inputand ~ * The teacher takes over the end-
mapped to the end-effectors to the effectors of the agent.

agent. - Demonstrated actions can be
Two challenges: imitated directly (cloned)

1) visual understanding * A.k.a. behavior cloning

2) action mapping, especially when
the agent and the teacher do not
have the same action space

we will come back to this in a later lecture this lecture!



Imitating Controllers
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» Experts do not need to be humans.

- Machinery that we develop in this lecture can be used for imitating expert
policies found through (easier) optimization in a constrained smaller part of
the state space.

» Imitation then means distilling knowledge of expert constrained policies into a
general policy that can do well in all scenarios the simpler policies do well.
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Imitation learning VS Sequence labelling

Imitation learning

Training data:
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Imitation learning VS Sequence labelling

Imitation learning
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Imitation learning VS Sequence labelling

Imitation learning

Action mterdependence in imitation Iearnmg the actions we predict

will influence the data we will see next, and thus, our future
predictions.

Label interdependence is present in any structured prediction task,

e.g, text generation: words we predict influence words we need to
predlct further down the sentence
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|mitation Learning for Driving

Driving policy: a mapping from observations to steering wheel angles
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Imitation Learning as Supervised Learning

Driving policy: a mapping from observations to steering wheel angles
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- Assume actions in the expert trajectories are i.1.d.

- Train a function approximator to map observations to actions at each
time step of the trajectory.

training supervised

| . 7T9(11t|0t)
data earning




What can go wrong?

- Compounding errors
Fix: data augmentation

- Stochastic expert actions
Fix: stochastic latent variable models, action discretiation, gaussian mixture networks

- Non-markovian observations
Fix: observation concatenation or recurrent models

pooling

supervised
data learning

training mo(us|oy)




What can go wrong?

- Compounding errors
Fix: data augmentation

training supervised

| . 7T9(11t|0t)
data earning



Independent In time errors

This means that at each time step t, the agent wakes up on a state drawn
from the data distribution of the expert trajectories, and executes an action

error at time t with probability €
E[Total errors] s €T



Compounding Errors

This means that at each time step t, the agent wakes up on the state that
resulted from executing the action the learned policy suggested in the
previous time step.

error at time t with probability €

E[Total errors] = (T + (T-1) + (T-2) + ...+ 1) &< T2



Data Distribution Mismatch!

Pr+(0t) # Pry(0¢)

Expert trajectory




Data Distribution Mismatch!

supervised learning +

supervised learning control (NAIVE)

SL succeeds when training and test data distributions match, that is a
fundamental assumption.



Solution: data augmentations

Change px+(0:) using demonstration augmentation!!
Add examples in expert demonstration trajectories to
cover the states/observations points where the agent
will land when trying out its own policy. How?

 Synthetically in simulation or by clever hardware

* Interactively with experts in the loop (DAGGER)



Solution: data augmentations

Change the training data distribution p-(o:) using demonstration
augmentation: add examples in expert demonstration trajectories to
cover the states/observations where the agent will land when trying
out its own policy.

supervised learning +

supervised learning control (NAIVE)




Demonstration Augmentation: ALVINN 1989

Road follower

Road Intensity 45 Dircction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

30x32 Video
Input Retina

e Using graphics simulator for road images and corresponding steering

angle ground-truth
« Online adaptation to human driver steering angle control
« 3 layers, fully connected layers, very low resolution input from camera



Demonstration Augmentation:

NVIDIA 2016

Recorded

Desired steering command

steering
wheel angle | Adjust for shift
- :
and rotation

Left camera

Random shift
and rotation

Center camera [———#

CNN

Network
computed
steering
command

Right camera

-

*

Back propagation |

weight adjustment

/// ——————— V) S
apP =
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Error

Additional, left and right
cameras with automatic
grant-truth labels to
recover from mistakes



Data Augmentation (2): NVIDIA 2016

DAVE 2 Driving a Lincoln

- A convolutional neural network
- Trained by human drivers
- Learns perception, path planning, and control

1" . - . "
pixel in, action out

- Front-facing camera is the only sensor




Data Augmentation (3): ITrails 2015

Network Outputs
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Left  Straight Righe
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Data Augmentation (3): Trails 2015




DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by (asking uman experts to provide) labelling additional data points resulting
from applying the current policy

Execute current policy and Query Expert
Steerin g —
from expert k,.e-(- \
Y;‘ ~N
N e 4§
o U W |

Aggregate

——
e D taset All previous data
/4/ = -

Supervised Learning




DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by (asking uman experts to provide) labelling additional data points resulting

from applying the current policy

1. train mg(ut|o¢) from human data Dy = {01, U1, ..., ON, UN }

| run mg(ut|ot) to get dataset D = {01, ..., 00}

3. Ask human to label D_ with actions U

4. Aggregate: D« < D_« UD_

Execute current policy and Query Expert

5. GOTO step 1.

Problems:
- execute an unsafe/partially trained policy

¢ repeatedly query the expert Supervised Learning



DAGGER (on a real platform)

Application on drones: given RGB from the drone camera predict
steering angles




DAGGER (on a real platform)

Application on drones : given RGB from the drone camera predict
steering angle

Caveats:

1. It is hard for the expert to provide the right magnitude for the turn

without feedback of his own actions! Solution: provide him with visual
feedback




DAGGER (on a real platform)

Caveats:

1.

Is hard for the expert to provide the right magnitude for the turn
without feedback of his own actions! Solution: provide him with his
visual feedback

. The expert’s reaction time to the drone’s behavior is large, this

causes imperfect actions to be commanded. Solution: play-back in
slow motion offline and record their actions.

Executing an imperfect policy causes accidents, crashes into
obstacles. Solution: safety measures which make again the data
distribution matching imperfect between train and test, but good
enough..



What can go wrong?

- Non-markovian observations
Fix: observation concatenation or recurrent models

supervised
data learning

training mo(us|oy)




Non-markovian observations

W@(ut‘ot) W@(ut|01770t)
\ \
behavior depends only behavior depends on

on current observation all past observations



FIX 1: concatenate observations
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shared weights

pooling

N

FIX 2: Uuse recurrent networks
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Typically, LSTM cells work better here




Recurrent Neural Networks (RNNS)

- RNNs tie the weights at each time step

- Condition the neural network on all previous inputs

- In principle, any interdependencies can be modeled across time
steps.

- In practice, limitations from SGD training, capacity, initialization etc.
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Recurrent Neural Network (single hidden layer)

* Given list of vectors: X1, ...,T¢—1,Tt, Tt41, -y TT
* At a single time step:
hy = U(W(hh)ht_l 4 W(hw)x[t])

Qt — softmax (W(S) ht)

(in case of discrete labels)

® |
(t-1) B () @

3

* | 0000]
o

_?




Recurrent Neural Networks

For sequence labelling problems, actions of the labelling policies are ¥, e.g.,
part of speech tags
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For sequence generation, actions of the labelling policies are Y+ = ¢4 1, e.qg.,
word in answer generation P(ze1 = vilze, ..., 31) = g
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What can go wrong?

- Stochastic expert actions
Fix: stochastic latent variable models, action discretiation, gaussian mixture networks

training supervised

pervised -, (g, [o,)
data earning




Regression fails under multimodality

The answer that minimizes the mean square error is the average
which is not a valid prediction

groundtruth streering angles
predicted streering angles



Stochastic expert actions

- Discretize the action space and use a classifier (e.g., softmax output
and cross-entropy loss




Stochastic expert actions: Fixes

- Use gaussian mixture model as an output layer, mixture components
weights, means and variances are parametrized at the output of a
neural net, minimize GMM loss, (e.g., Handwriting generation Graves

2013)
m(alo) = Z wilN (pi, i)




Stochastic expert actions: Fixes

- Stochastic neural networks (later lecture




Structured prediction

Structured prediction: a learner makes predictions over a set of interdependent
output variables and observes a joint loss.

part-of-speech tagging

X the monster ate the sandwich
Yy Dt NN Vb Dt NN

NER (Name Entity Recognition)

Yesterday I traveled to Lille

- PER - -  LOC

tracking Machine translation

(i “‘ ,F:T | GO 'L)g[e Translate

This text has been autormatically translated frarm Arabic:

Noscow stressed tone against Iran on its -
nuc lear program. He called Russian Foreign
Miniscer Tehran to take concrete sSteps

fid with the i tional
community, to cooperate fully with the IAEL.
Conversely Teh P d lling |

- . Translate text

captioning T T TS T T Tn o0
Clghs JLEL B 0l gk gl ey L e Leo
dslmidly Jsadl gatdl zo 18301 Bolaiud degala
Y 3lgb Sul JULELL, L dgddl AILSsll ge Jal<dl
Pt )l Sladeny plowdl SLLATLY Laslumis
csasill Lgila 51 pls bLAW] byhs 49148

frarm| Arabic to English BETA =| Translate |

“A blue monster is eating a cookie”



Recurrent Neural Networks

The reqgular training procedure of RNNSs treat true labels Y: as actions
while making forward passes. Hence, the learning agent follows
trajectories generated by the reference policy rather than the learned
policy. In other words, it learns:

P*UP = arg m@in Cn~d o« [lo(R)]

However, our true goal is to learn a policy that minimizes error under
Its own induced state distribution:

- arg m@in Eheods Lo ()]



Mocap generation
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DAGGER for sequence labelling/generation

Q: what we be feeding the groundtruth x,y or the predicted x,y during training?

1: function TRAIN(N, &)

2 Intalize & = 1.

3 Initialize model parameters ¢.

4; for: = 1.N do

5: Seta = o« p. ]

6 Randomize a batch of labeled examples. TeaCher fOfCIng
7 for each example (:r, y) in the batch do

8: Initialize hy = ©(X).

9: Initialize D = {(hg.yo)}-

10: fort=1...|Y|do

1 Uniformly randomize a floating-number 3 € [0, 1).
12: if « < [ then

13: Use true label ;1 = y¢ 1

14 else

15: Use predicted label: 4, = argmax, P(y | hy—130).
16: end if

17: Compute the next state: hy = fop(he 1,9: 1).

18: Add example: D = DU {{he, y¢)}-

19: end for

20: end for

21: Online update # by D (mini-batch back-propagation).

22 end for

23: end function




Mocap generation

- Right: no augmentation, using only ground-truth state input
- Left: augmentation by adding Gaussian noise to the state (not to the prediction)

Motion Generation

When adding noise to the input, despite the per frame prediction error being
larger, the long term prediction error is lower.



Case study: learning from virtual demonstrations

Gripper state Gripper state
- atnext gﬁe,‘t i :(r:verseﬂ -
time-step lime-step nomares
T T
= TG i Multilayer l Muliilayer
Dataset of frajectories ~~.| | LSTMNN LSTM NN
for training X i < E—
Current state of |
the environment Current state of e
and gripper the environment -~
and gripper Robot performs the task in
Demconstration of the task Training an LSTM network real-world based on the trajectory
by user in the simulation on demonstraticns generated by the network
Virtual world: training the network Physical world: inference from the network

Two tasks considered: pick and place, move to desired pose

State representation X: the poses of all the objects in the seen (rotations, translations) and the

pose of the end effector

Output Y. the desired next pose of the end effector

Supervision: expert trajectories in the simulator

 Demonstation augmentation: consider multiple trajectories by subsampling in time the expert
ones, and by translating in space the end effector



Case study: learning from virtual demonstrations
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Multimodality of actions-> GMM loss!

Predict mixture weights over a Gaussian Mixture Model at the output
(alphas) and mean and variances for the mixture components.




Case study: learning from virtual demonstrations

Multivariate Mixture draw a sample
of Gaussians

et+ 1

Mixture density
parameters

Inverse

kinematics
LSTM |
\ﬁi_l
e Joint angles
LSTM |
ESE 1
— B ey
LSTM |
g0
€, G, /,’

LSTM-MDN network performing the task in a closed loop

* Multimodality: predict mixture weights over a Gaussian Mixture
Model at the output (alphas) and mean and variances for the
mixture components. Minimize a GMM loss.



Case study: learning from virtual demonstrations
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Case study: learning from virtual demonstrations

Learning Manipulation Trajectories
Using Recurrent Neural Networks



