Deep Reinforcement Learning and Control

Natural Policy Gradients (cont.)

Katerina Fragkiadaki
Revision
What Loss to Optimize?

Policy gradients

\[\hat{g} = \hat{E}_{t \in T} \cdot \log \pi(a_t | s_t) \cdot \hat{A}_t \]

Can differentiate the following loss

\[L_{PG}(\pi) = \hat{E}_{t \in T} \log \pi(a_t | s_t) \cdot \hat{A}_t. \]

but don't want to optimize it too far

Equivalently differentiate

\[L_{IS}(\pi) = \hat{E}_{t \in T} \log \pi(a_t | s_t) \cdot \pi(a_t | s_t) \cdot \hat{A}_t. \]

at \(\pi = \pi_{old} \), state-actions are sampled using \(\pi_{old} \). (IS = importance sampling)

Just the chain rule:

\[r \cdot \log f(\pi) = r \cdot f(\pi) \cdot f(\pi_{old}) \]

Policy Gradients

1. Collect trajectories for policy \(\pi_\theta \)
2. Estimate advantages \(A \)
3. Compute policy gradient \(\hat{g} \)
4. Update policy parameters \(\theta_{new} = \theta + \epsilon \cdot \hat{g} \)
5. GOTO 1

How to estimate this gradient
Policy Gradients

1. Collect trajectories for policy π_θ
2. Estimate advantages A
3. Compute policy gradient \hat{g}
4. Update policy parameters $\theta_{new} = \theta + \epsilon \cdot \hat{g}$
5. GOTO 1

How to estimate the stepsize

\[
\theta_{old} \quad \mu_\theta(s) \quad \sigma_\theta(s) \\
\theta_{new} \quad \mu_{\theta_{new}}(s) \quad \sigma_{\theta_{new}}(s)
\]
1. Collect trajectories for policy π_θ
2. Estimate advantages A
3. Compute policy gradient \hat{g}
4. Update policy parameters $\theta_{\text{new}} = \theta + \epsilon \cdot \hat{g}$
5. GOTO 1

- Step too big
 - Bad policy->data collected under bad policy-> we cannot recover
 (in Supervised Learning, data does not depend on neural network weights)
- Step too small
 - Not efficient use of experience
 (in Supervised Learning, data can be trivially re-used)
What is the underlying optimization problem?

We started here:

\[
\max_{\theta} \quad U(\theta) = \mathbb{E}_{\tau \sim P(\tau; \theta)}[R(\tau)] = \sum_{\tau} P(\tau; \theta)R(\tau)
\]

Policy gradients:

\[
\hat{g} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)})A(s_{t}^{(i)}, a_{t}^{(i)}), \quad \tau_{i} \sim \pi_{\theta}
\]

\[
\hat{g} = \mathbb{E}_{t} \left[\nabla_{\theta} \log \pi_{\theta}(\alpha_{t} | s_{t})A(s_{t}, a_{t}) \right]
\]

This result from differentiating the following objective function:

\[
U^{PG}(\theta) = \mathbb{E}_{t} \left[\log \pi_{\theta}(\alpha_{t} | s_{t})A(s_{t}, a_{t}) \right]
\]

\[
\max_{\theta} \quad U^{PG}(\theta)
\]

This is not the right objective: we can’t optimize too far (as the advantage values become invalid), and this constraint shows up nowhere in the optimization:

Compare this to supervised learning using expert actions \(\tilde{a} \sim \pi^{*}\) and a maximum likelihood objective:

\[
U^{SL}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\tilde{a}_{t}^{(i)} | s_{t}^{(i)}), \quad \tau_{i} \sim \pi^{*} \quad (+\text{regularization})
\]
Hard to choose stepsizes

1. Collect trajectories for policy π_θ
2. Estimate advantages A
3. Compute policy gradient \hat{g}
4. Update policy parameters $\theta_{new} = \theta + \epsilon \cdot \hat{g}$
5. GOTO 1

Consider a family of policies with parametrization:

$$\pi_\theta(a) = \begin{cases}
\sigma(\theta) & a = 1 \\
1 - \sigma(\theta) & a = 2
\end{cases}$$

The same parameter step $\Delta \theta = -2$ changes the policy distribution more or less dramatically depending on where in the parameter space we are.
Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward distributions change
I Bad step is more damaging than in supervised learning, since it affects visitation distribution
I Step too far
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

Sample efficiency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Notation

We will use the following to denote values of parameters and corresponding policies before and after an update:

\[
\theta_{old} \rightarrow \theta_{new} \\
\pi_{old} \rightarrow \pi_{new} \\
\theta \rightarrow \theta' \\
\pi \rightarrow \pi'
\]
Gradient Descent in Distribution Space

The stepwise in gradient descent results from solving the following optimization problem, e.g., using line search:

\[
d^* = \arg \max_{\|d\| \leq \epsilon} U(\theta + d)
\]

SGD: \(\theta_{new} = \theta_{old} + d^* \)

Euclidean distance in parameter space

It is hard to predict the result on the parameterized distribution. hard to pick the threshold epsilon

Natural gradient descent: the stepwise in parameter space is determined by considering the KL divergence in the distributions before and after the update:

\[
d^* = \arg \max_{d, \text{s.t. } \text{KL}(\pi_\theta \| \pi_{\theta+d}) \leq \epsilon} U(\theta + d)
\]

KL divergence in distribution space

Easier to pick the distance threshold (and we made the constraint explicit of ``don’t optimize too much”)

\[
D_{KL}(P\|Q) = \sum_i P(i) \log \left(\frac{P(i)}{Q(i)} \right)
\]

\[
D_{KL}(P\|Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)} \right) dx
\]
Solving the KL Constrained Problem

Let’s solve it: first order Taylor expansion for the loss and second order for the KL:

\[
U(\theta) = \mathbb{E}_t \left[\log \pi_\theta(\alpha_t | s_t) A(s_t, a_t) \right]
\]

Unconstrained penalized objective:

\[
d^* = \arg \max_d U(\theta + d) - \lambda(D_{KL} [\pi_\theta || \pi_{\theta + d}] - \epsilon)
\]

Let’s solve it: first order Taylor expansion for the loss and second order for the KL:

\[
d^* \approx \arg \max_d U(\theta_{old}) + \nabla_\theta U(\theta)|_{\theta=\theta_{old}} \cdot d - \frac{1}{2} \lambda(d^T \nabla^2_{\theta} D_{KL} [\pi_{\theta_{old}} || \pi_\theta]|_{\theta=\theta_{old}} d) + \lambda \epsilon
\]

Q: How will you compute this?
KL Taylor expansion

\[
D_{\text{KL}}(p_{\theta_{\text{old}}} | p_\theta) \approx D_{\text{KL}}(p_{\theta_{\text{old}}} | p_{\theta_{\text{old}}}) + d^\top \nabla_\theta D_{\text{KL}}(p_{\theta_{\text{old}}} | p_\theta) |_{\theta=\theta_{\text{old}}} + \frac{1}{2} d^\top \nabla_\theta^2 D_{\text{KL}}(p_{\theta_{\text{old}}} | p_\theta) |_{\theta=\theta_{\text{old}}} d
\]
KL Taylor expansion

\[
D_{KL}(p_{\theta_{old}} \mid p_\theta) \approx \frac{1}{2} d^\top \nabla_\theta^2 D_{KL}(p_{\theta_{old}} \mid p_\theta) \mid_{\theta=\theta_{old}} d
\]

\[
= \frac{1}{2} d^\top F(\theta_{old}) d
\]

\[
= \frac{1}{2} (\theta - \theta_{old})^\top F(\theta_{old})(\theta - \theta_{old})
\]

Fisher Information matrix:

\[
F(\theta) = \mathbb{E}_\theta \left[\nabla_\theta \log p_\theta(x) \nabla_\theta \log p_\theta(x)^\top \right]
\]

\[
F(\theta_{old}) = \nabla_\theta^2 D_{KL}(p_{\theta_{old}} \mid p_\theta) \mid_{\theta=\theta_{old}}
\]

Since KL divergence is roughly analogous to a distance measure between distributions, Fisher information serves as a **local distance metric between distributions**: how much you change the distribution if you move the parameters a little bit in a given direction.
Unconstrained penalized objective:

\[d^* = \arg \max_d U(\theta + d) - \lambda(D_{\text{KL}}[\pi_\theta \| \pi_{\theta+d}] - \epsilon) \]

First order Taylor expansion for the loss and second order for the KL:

\[\approx \arg \max_d U(\theta_{\text{old}}) + \nabla_\theta U(\theta) |_{\theta=\theta_{\text{old}}} \cdot d - \frac{1}{2} \lambda(d^\top \nabla^2_{\theta} D_{\text{KL}}[\pi_{\theta_{\text{old}}} \| \pi_\theta] |_{\theta=\theta_{\text{old}}} d) + \lambda \epsilon \]

Substitute for the information matrix:

\[= \arg \max_d \nabla_\theta U(\theta) |_{\theta=\theta_{\text{old}}} \cdot d - \frac{1}{2} \lambda(d^\top \mathbf{F}(\theta_{\text{old}})d) \]

\[= \arg \min_d - \nabla_\theta U(\theta) |_{\theta=\theta_{\text{old}}} \cdot d + \frac{1}{2} \lambda(d^\top \mathbf{F}(\theta_{\text{old}})d) \]
Natural Gradient Descent

Setting the gradient to zero:

\[
0 = \frac{\partial}{\partial d} \left(-\nabla_{\theta} U(\theta) |_{\theta=\theta_{old}} \cdot d + \frac{1}{2} \lambda (d^\top F(\theta_{old}) d) \right) \\
= -\nabla_{\theta} U(\theta) |_{\theta=\theta_{old}} + \frac{1}{2} \lambda (F(\theta_{old})) d \\
d = \frac{2}{\lambda} F^{-1}(\theta_{old}) \nabla_{\theta} U(\theta) |_{\theta=\theta_{old}}
\]

The natural gradient:

\[
g_N = F^{-1}(\theta_{old}) \nabla_{\theta} U(\theta)
\]

\[
\theta_{new} = \theta_{old} + \alpha \cdot g_N
\]

Let’s solve for the stepsize along the natural gradient direction:

\[
\mathcal{D}_{KL}(\pi_{\theta_{old}} | \pi_{\theta}) \approx \frac{1}{2} (\theta - \theta_{old})^\top F(\theta_{old})(\theta - \theta_{old}) \\
\frac{1}{2} (\alpha g_N)^\top F(\alpha g_N) = \epsilon \\
\alpha = \sqrt{\frac{2\epsilon}{(g_N)^\top F(g_N)}}
\]
The natural gradient:

\[g_N = \mathbf{F}^{-1}(\theta_{old}) \nabla_\theta U(\theta) \]

\[\theta_{new} = \theta_{old} + \alpha \cdot g_N \]

Let’s solve for the stepsize along the natural gradient direction!

\[D_{KL}(\pi_{\theta_{old}} | \pi_\theta) \approx \frac{1}{2} (\theta - \theta_{old})^\top \mathbf{F}(\theta_{old})(\theta - \theta_{old}) = \frac{1}{2} (\alpha g_N)^\top \mathbf{F}(\alpha g_N) \]

I want the KL between old and new policies to be \(\epsilon \):

\[\frac{1}{2} (\alpha g_N)^\top \mathbf{F}(\alpha g_N) = \epsilon \]

\[\alpha = \sqrt{\frac{2\epsilon}{(g_N^\top \mathbf{F} g_N)}} \]
Natural Gradient Descent

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters θ_0

for $k = 0, 1, 2, \ldots$ do

Collect set of trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$

Estimate advantages $\hat{A}^{\pi_k}_t$ using any advantage estimation algorithm

Form sample estimates for

- policy gradient \hat{g}_k (using advantage estimates)
- and KL-divergence Hessian / Fisher Information Matrix \hat{H}_k

Compute Natural Policy Gradient update:

$$\theta_{k+1} = \theta_k + \sqrt{\frac{2 \mathcal{E}}{\hat{g}_k^T \hat{H}_k^{-1} \hat{g}_k}} \hat{H}_k^{-1} \hat{g}_k$$

end for

Both use samples from the current policy $\pi_k = \pi(\theta_k)$
Natural Gradient Descent

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters θ_0

for $k = 0, 1, 2, \ldots$ do

Collect set of trajectories \mathcal{D}_k on policy $\pi_k = \pi(\theta_k)$

Estimate advantages $\hat{A}_t^{\pi_k}$ using any advantage estimation algorithm

Form sample estimates for
- policy gradient \hat{g}_k (using advantage estimates)
- and KL-divergence Hessian / Fisher Information Matrix \hat{H}_k

Compute Natural Policy Gradient update:

$$\theta_{k+1} = \theta_k + \sqrt{\frac{2\mathcal{E}}{\hat{g}_k^T \hat{H}_k^{-1} \hat{g}_k}} \hat{H}_k^{-1} \hat{g}_k$$

end for

very expensive to compute for a large number of parameters!
What is the underlying optimization problem?

We started here:

$$\max_{\theta} \ U(\theta) = \mathbb{E}_{\tau \sim P(\tau; \theta)}[R(\tau)] = \sum_{\tau} P(\tau; \theta) R(\tau)$$

Policy gradients:

$$\hat{g} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{i}^{(i)} | s_{i}^{(i)}) A(s_{i}^{(i)}, a_{i}^{(i)}), \quad \tau_{i} \sim \pi_{\theta}$$

$$\hat{g} = \mathbb{E}_{t} \left[\nabla_{\theta} \log \pi_{\theta}(\alpha_{t} | s_{t}) A(s_{t}, a_{t}) \right]$$

This result from differentiating the following objective function:

$$U^{PG}(\theta) = \mathbb{E}_{t} \left[\log \pi_{\theta}(\alpha_{t} | s_{t}) A(s_{t}, a_{t}) \right]$$

``don’t optimize too much” constraint:

$$\max_{d} \ \mathbb{E}_{t} \left[\log \pi_{\theta+d}(\alpha_{t} | s_{t}) A(s_{t}, a_{t}) \right] - \lambda \text{D}_{\text{KL}} \left[\pi_{\theta} \parallel \pi_{\theta+d} \right]$$

We used the 1st order approximation for the 1st term, but what if d is large??
Alternative derivation

\[
U(\theta) = \mathbb{E}_{\tau \sim \pi_\theta(\tau)} \left[R(\tau) \right] \\
= \sum_{\tau} \pi_\theta(\tau) R(\tau) \\
= \sum_{\tau} \pi_{\theta_{old}}(\tau) \frac{\pi_\theta(\tau)}{\pi_{\theta_{old}}(\tau)} R(\tau) \\
= \mathbb{E}_{\tau \sim \pi_{\theta_{old}}} \frac{\pi_\theta(\tau)}{\pi_{\theta_{old}}(\tau)} R(\tau)
\]

\[
\nabla_\theta U(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta_{old}}} \nabla_\theta \frac{\pi_\theta(\tau)}{\pi_{\theta_{old}}(\tau)} R(\tau)
\]

\[
\nabla_\theta U(\theta) \big|_{\theta=\theta_{old}} = \mathbb{E}_{\tau \sim \pi_{\theta_{old}}} \nabla_\theta \log \pi_\theta(\tau) \big|_{\theta=\theta_{old}} R(\tau)
\]

\[
\text{max} \quad \mathbb{E}_t \left[\frac{\pi_\theta(a_t \mid s_t)}{\pi_{\theta_{old}}(a_t \mid s_t)} A(s_t, a_t) \right] - \lambda D_{KL} \left[\pi_{\theta_{old}} \parallel \pi_\theta \right]
\]

\[
\text{<-Gradient evaluated at theta_old is unchanged}
\]
Trust region Policy Optimization

Constrained objective:

\[
\max_{\theta} \mathbb{E}_t \left[\frac{\pi_\theta(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)} A(s_t, a_t) \right] \\
\text{subject to } \mathbb{E}_t \left[D_{KL} \left[\pi_{old}(\cdot \mid s_t) \| \pi_\theta(\cdot \mid s_t) \right] \right] \leq \delta
\]

Or unconstrained objective:

\[
\max_{\theta} \mathbb{E}_t \left[\frac{\pi_\theta(a_t \mid s_t)}{\pi_{old}(a_t \mid s_t)} A(s_t, a_t) \right] - \beta \mathbb{E}_t \left[D_{KL} \left[\pi_{old}(\cdot \mid s_t) \| \pi_\theta(\cdot \mid s_t) \right] \right]
\]

Can I achieve similar performance without second order information (no Fisher matrix!)

\[r_t(\theta) = \frac{\pi_\theta(a_t | s_t)}{\pi_{\theta_{old}}(a_t | s_t)} \]

\[
\max_{\theta} \quad L^{CLIP} = \mathbb{E}_t \left[\min \left(r_t(\theta)A(s_t, a_t), \operatorname{clip} \left(r_t(\theta), 1 - \epsilon, 1 + \epsilon \right) A(s_t, a_t) \right) \right]
\]
Figure: Performance comparison between PPO with clipped objective and various other deep RL methods on a slate of MuJoCo tasks. 10
Towards Generalization and Simplicity in Continuous Control

Aravind Rajeswaran* Kendall Lowrey* Emanuel Todorov Sham Kakade
University of Washington Seattle

{ aravraj, klowrey, toodorov, sham } @ cs.washington.edu

Training linear policies to solve control tasks with natural policy gradients

https://youtu.be/frojcskMkkY
Algorithm 1 Policy Search with Natural Gradient

1: Initialize policy parameters to θ_0
2: for $k = 1$ to K do
3: Collect trajectories $\{\tau^{(1)}, \ldots, \tau^{(N)}\}$ by rolling out the stochastic policy $\pi(\cdot; \theta_k)$.
4: Compute $\nabla_{\theta} \log \pi(a_t | s_t; \theta_k)$ for each (s, a) pair along trajectories sampled in iteration k.
5: Compute advantages A^π_k based on trajectories in iteration k and approximate value function V^π_{k-1}.
6: Compute policy gradient according to (2).
7: Compute the Fisher matrix (4) and perform gradient ascent (5).
8: Update parameters of value function in order to approximate $V^\pi_k(s^{(n)}_t) \approx R(s^{(n)}_t)$, where $R(s^{(n)}_t)$ is the empirical return computed as $R(s^{(n)}_t) = \sum_{t'=t}^{T} \gamma^{(t'-t)} r^{(n)}_t$. Here n indexes over the trajectories.
9: end for

State s: joint positions, joint velocities, contact info

$$a_t \sim \mathcal{N}(W s_t + b, \sigma).$$
observations: joint positions, joint velocities, contact info
Deep Reinforcement Learning and Control

Multigoal RL

Katerina Fragkiadaki
So far we train one policy/value function per task, e.g., win the game of Tetris, win the game of Go, reach to a *particular* location, put the green cube inside the gray bucket, etc.
Universal value function Approximators

\[V(s; \theta) \quad \rightarrow \quad V(s, g; \theta) \]

\[\pi(s; \theta) \quad \rightarrow \quad \pi(s, g; \theta) \]

- All methods we have learnt so far can be used.
- At the beginning of an episode, we sample not only a start state but also a goal \(g \), which stays constant throughout the episode.
- The experience tuples should contain the goal.

\[(s, a, r, s') \quad \rightarrow \quad (s, g, a, r, s') \]
What should be my goal representation?
(not an easy question, same as your state representation)

- **Manual**: 3d centroids of objects, robot joint angles and velocities, 3d location of the gripper, etc.
- **Learnt**: We supply a target image as the goal, and an autoencoder learns to map it to an embedding vector by minimizing reconstruction loss
Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel†, Wojciech Zaremba†
OpenAI

Main idea: use failed executions under one goal g, as successful executions under an alternative goal g’ (which is where we ended spat the end of the episode)

Goal g
Our reacher at the end of the episode
\((s, g, a, 0, s')\)

Goal g’
Our reacher at the end of the episode
\((s, g', a, 1, s')\)

No reward :-(

reward :-)
Main idea: use failed executions under one goal g, as successful executions under an alternative goal g' (which is where we ended spat the end of the episode)
Hindsight Experience Replay

Algorithm 1 Hindsight Experience Replay (HER)

Given:
- an off-policy RL algorithm A,
- a strategy S for sampling goals for replay,
- a reward function $r: S \times A \times G \to \mathbb{R}$.

Initialize A
Initialize replay buffer R

for episode = 1, M do

Sample a goal g and an initial state s_0.

for $t = 0, T - 1$ do

Sample an action a_t using the behavioral policy from A:
$$a_t \leftarrow \pi_b(s_t||g)$$

Execute the action a_t and observe a new state s_{t+1}

end for

for $t = 0, T - 1$ do

$\gamma_t := r(s_t, a_t, g)$

Store the transition $(s_t||g, a_t, r_t, s_{t+1}||g)$ in R \hspace{1cm} \triangleright \text{standard experience replay}

Sample a set of additional goals for replay $G := S(\text{current episode})$

for $g' \in G$ do

$\gamma' := r(s_t, a_t, g')$

Store the transition $(s_t||g', a_t, r', s_{t+1}||g')$ in R \hspace{1cm} \triangleright \text{HER}

end for

end for

for $t = 1, N$ do

Sample a minibatch B from the replay buffer R

Perform one step of optimization using A and minibatch B

end for

end for

\hspace{1cm} \triangleright \text{e.g. DQN, DDPG, NAF, SDQN}
\hspace{1cm} \triangleright \text{e.g. } S(s_0, \ldots, s_T) = m(s_T)
\hspace{1cm} \triangleright \text{e.g. } r(s, a, g) = -[f_g(s) = 0]
\hspace{1cm} \triangleright \text{e.g. initialize neural networks}

Usually as additional goal we pick the goal that this episode achieved, and the reward becomes non zero
Reward shaping: instead of using binary rewards, use continuous rewards, e.g., by considering Euclidean distances from goal configuration.

HER does not require reward shaping! :-)

The burden goes from designing the reward to designing the goal encoding.. :-(
Hindsight Experience Replay
Deep Reinforcement Learning and Control

MCTS with neural networks

Katerina Fragkiadaki
Simplest Monte-Carlo Search

- Given a model \mathcal{M}_ν and a most of the times random policy π
- For each action $a \in \mathcal{A}$
 - Simulate K episodes from current (real) state s:
 $$\{s_t, a, R_{t+1}^k, S_{t+1}^k, A_{t+1}^k, \ldots, S_T^k\}_{k=1}^K \sim \mathcal{M}_\nu, \pi$$
 - Evaluate action value function of the root by mean return
 $$Q(s_t, a) = \frac{1}{K} \sum_{k=1}^K G_t \xrightarrow{P} q_{\pi}(s_t, a)$$
 - Select current (real) action with maximum value
 $$a_t = \arg\max_{a \in \mathcal{A}} Q(s_t, a)$$
Can we do better?

- Could we be improving our simulation policy the more simulations we obtain?
- Yes we can! We can have two policies:
 1. Internal to the tree: keep track of action values Q not only for the root but also for nodes internal to a tree we are expanding, and (maybe) use ϵ-greedy(Q) to improve the simulation policy over time
 2. External to the tree: we do not have Q estimates and thus we use a random policy

In MCTS, the simulation policy improves

- Any better ideas for the simulation policy?
Monte-Carlo Tree Search

We will allocate samples more efficiently!

- In MCTS, the simulation policy improves

 - Each simulation consists of two phases (in-tree, out-of-tree)
 - Tree policy (improves): pick actions to maximize \(Q(s, a) \)
 - Default policy (fixed): pick actions often randomly
 - Repeat (each simulation)
 - Evaluate states \(Q(s, a) \) by Monte-Carlo evaluation
 - Improve there policy, e.g. by \(\epsilon - \text{greedy}(Q) \)
 - Converges on the optimal search tree assuming each action in the tree is tried infinitely often.
Monte-Carlo Tree Search

Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Monte-Carlo Tree Search

MCTS helper functions

function UCB_sample(state):
 weights = []
 for child of state:
 w = child.value + C * sqrt(ln(state.visits) / child.visits)
 weights.append(w)
 distribution = [w / sum(weights) for w in weights]
 return child sampled according to distribution

function random_playout(state):
 if is_terminal(state):
 return winner
 else: return random_playout(random_move(state))
Monte-Carlo Tree Search

MCTS helper functions

```python
function expand(state):
    state.visits = 1
    state.value = 0

function update_value(state, winner):
    if winner == state.turn:
        state.value += 1
    else:
        state.value -= 1
```
Monte Carlo Tree Search

Gradually grow the search tree:

I Iterate Tree-Walk

I Building Blocks

I Select next action

Bandit phase

I Add a node

Grow a leaf of the search tree

I Select next action bis

Random phase, roll-out

I Compute instant reward

Evaluate

I Update information in visited nodes

Propagate

Returned solution:

I Path visited most often

Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Basic MCTS pseudocode

```python
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Basic MCTS pseudocode

```python
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```

Monte-Carlo Tree Search

Kocsis Szepesvári, 06

Gradually grow the search tree:

I Iterate Tree-Walk

I Building Blocks

I Select next action

Bandit phase

I Add a node

Grow a leaf of the search tree

I Select next action bis

Random phase, roll-out

I Compute instant reward

Evaluate

I Update information in visited nodes

Propagate

Returned solution:

I Path visited most often

Explored Tree

Search Tree

Phase

Bandit-Based

Phase
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Basic MCTS pseudocode

```python
function MCTS_sample(state):
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
    winner = random_playout(next_state)
    update_value(state, winner)

function random_playout(state):
    if is_terminal(state):
        return winner
    else: return random_playout(random_move(state))
```
Basic MCTS pseudocode

```python
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)

function random_playout(state):
    if is_terminal(state):
        return winner
    else: return random_playout(random_move(state))
```
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)

function random_playout(state):
 if is_terminal(state):
 return winner
 else: return random_playout(random_move(state))
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)

function random_playout(state):
 if is_terminal(state):
 return winner
 else: return random_playout(random_move(state))
Basic MCTS pseudocode

function MCTS_sample(state)
 state.visits++
 if all children of state expanded:
 next_state = UCB_sample(state)
 winner = MCTS_sample(next_state)
 else:
 if some children of state expanded:
 next_state = expand(random unexpanded child)
 else:
 next_state = state
 winner = random_playout(next_state)
 update_value(state, winner)
Can we inject prior knowledge into value functions to be estimated and actions to be tried, instead of initializing uniformly?
Monte-Carlo Tree Search

1. Selection
 • Used for nodes we have seen before
 • Pick according to UCB
2. Expansion
 • Used when we reach the frontier
 • Add one node per playout
3. Simulation
 • Used beyond the search frontier
 • Don’t bother with UCB, just play randomly
4. Backpropagation
 • After reaching a terminal node
 • Update value and visits for states expanded in selection and expansion

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006
Case Study: the Game of Go

- The ancient oriental game of Go is 2500 years old
- Considered to be the hardest classic board game
- Considered a grand challenge task for AI (John McCarthy)
- Traditional game-tree search has failed in Go
Rules of Go

- Usually played on 19x19, also 13x13 or 9x9 board
- Simple rules, complex strategy
- Black and white place down stones alternately
- Surrounded stones are captured and removed
- The player with more territory wins the game
• Value neural net to evaluate board positions
• Policy neural net to select moves
• Combine those networks with MCTS
AlphaGo: Learning-guided search

1. Train two action policies, one cheap (rollout) policy p_π and one expensive policy p_σ by mimicking expert moves (standard supervised learning).
2. Then, train a new policy p_ρ with RL and self-play initialized from SL policy.
3. Train a value network that predicts the winner of games played by p_ρ against itself.
Supervised learning of policy networks

- Objective: predicting expert moves
- Input: randomly sampled state-action pairs \((s, a)\) from expert games
- Output: a probability distribution over all legal moves \(a\).

SL policy network: 13-layer policy network trained from 30 million positions. The network predicted expert moves on a held out test set with an accuracy of 57.0% using all input features, and 55.7% using only raw board position and move history as inputs, compared to the state-of-the-art from other research groups of 44.4%.
Reinforcement learning of policy networks

- Objective: improve over SL policy
- Weight initialization from SL network
- Input: Sampled states during self-play
- Output: a probability distribution over all legal moves \(a \).

Rewards are provided only at the end of the game, +1 for winning, -1 for loosing.

The RL policy network won more than 80% of games against the SL policy network.
Reinforcement learning of value networks

- **Objective**: Estimating a value function \(v_r(s) \) that predicts the outcome from position \(s \) of games **played by using RL policy \(p \) for both players** (in contrast to min-max search)
- **Input**: Sampled states during self-play, 30 million distinct positions, each sampled from a separate game, played by the RL policy against itself.
- **Output**: a scalar value

Trained by regression on state-outcome pairs \((s, z)\) to minimize the mean squared error between the predicted value \(v(s) \), and the corresponding outcome \(z \).
Selection: selecting actions within the expanded tree

Tree policy

\[a_t = \text{argmax}_a (Q(s_t, a) + u(s_t, a)) \]

\[u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)} \]

- \(a_t \) - action selected at time step \(t \) from board \(s_t \)
- \(Q(s_t, a) \) - average reward collected so far from MC simulations
- \(P(s, a) \) - prior expert probability of playing moving \(a \) provided by SL policy
- \(N(s, a) \) - number of times we have visited parent node
- \(u \) acts as a bonus value
 - Decays with repeated visits
Expansion: when reaching a leaf, play the action with highest score from p_σ

- When leaf node is reached, it has a chance to be expanded
- Processed once by SL policy network (p_σ) and stored as prior probs $P(s, a)$
- Pick child node with highest prior prob
Simulation/Evaluation: use the rollout policy to reach to the end of the game

- From the selected leaf node, run multiple simulations in parallel using the rollout policy
- Evaluate the leaf node as:

\[V(s_L) = (1 - \lambda)v_\theta(s_L) + \lambda z_L \]

- \(v_\theta \) - value from value function of board position \(s_L \)
- \(z_L \) - Reward from fast rollout \(p_\pi \)
 - Played until terminal step
- \(\lambda \) - mixing parameter
 - Empirical
MCTS + Policy/Value networks

Backup: update visitation counts and recorded rewards for the chosen path inside the tree:

\[
N(s, a) = \sum_{i=1}^{n} 1(s, a, i)
\]

\[
Q(s, a) = \frac{1}{N(s, a)} \sum_{i=1}^{n} 1(s, a, i)V(s^i_L)
\]

- Extra index \(i\) is to denote the \(i^{th}\) simulation, \(n\) total simulations
- Update visit count and mean reward of simulations passing through node
- Once search completes:
 - Algorithm chooses the most visited move from the root position
• So far, look-ahead search was used for online planning at test time!
• AlphaGoZero uses it during training instead, for improved exploration during self-play
• AlphaGo trained the RL policy using the current policy network p_ρ and a randomly selected previous iteration of the policy network as opponent (for exploration).
• The intelligent exploration in AlphaGoZero gets rid of human supervision.
AlphaGoZero: Lookahead search during training!

- Given any policy, a MCTS guided by this policy will produce an improved policy (policy improvement operator)
- Train to mimic such improved policy
MCTS as policy improvement operator

- Train so that the policy network mimics this improved policy
- Train so that the position evaluation network output matches the outcome (same as in AlphaGo)
MCTS: no MC rollouts till termination

MCTS: using always value net evaluations of leaf nodes, no rollouts!
Architectures

- Resnets help
- Jointly training the policy and value function using the same main feature extractor helps
- Lookahead tremendously improves the basic policy
Architectures

- Resnets help
- Jointly training the policy and value function using the same main feature extractor helps