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Policy Gradient 
‣ Let U(θ) be any policy objective function 

‣ Policy gradient algorithms search for a local 
maximum in U(θ) by ascending the gradient of 
the policy, w.r.t. parameters θ 

Δθ = α∇θU(θ)
θnew = θold + Δθ

α is a step-size 
parameter (learning 
rate) 

is the policy gradient 

∇θU(θ)

∂U(θ)
∂θ1

∂U(θ)
∂θn

Policy gradient: the gradient of the policy objective w.r.t. the parameters of the policy

Previous 3 lectures 
were about estimating/
computing this



Computing the policy gradient
max

θ
. U(θ) = 𝔼x∼Pθ(x) f(x) max

θ
. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇U(θ) = 𝔼x∼Pθ(x) ∇θ log Pθ(x)f(x) ∇U(θ) = 𝔼τ∼Pθ(τ) [∇θ log Pθ(τ)R(τ)]

Likelihood ratio gradient estimator



∇θ𝔼x f(x) = ∇θ𝔼x∼Pθ(x) [f(x)]
= ∇θ ∑

x

Pθ(x)f(x)

= ∑
x

∇θPθ(x)f(x)

= ∑
x

Pθ(x)
∇θPθ(x)

Pθ(x)
f(x)

= ∑
x

Pθ(x)∇θlog Pθ(x)f(x)

= 𝔼x∼Pθ(x) [∇θlog Pθ(x)f(x)]
≈

1
N

N

∑
i=1

∇θlog Pθ(x(i))f(x(i))

From the law of 
large numbers, I 
can obtain an 
unbiased 
estimator for the 
gradient by 
sampling!

Derivatives of expectations 



Computing the policy gradient
max

θ
. U(θ) = 𝔼x∼Pθ(x) f(x) max

θ
. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇U(θ) = 𝔼x∼Pθ(x) ∇θ log Pθ(x)f(x) ∇U(θ) = 𝔼τ∼Pθ(τ) [∇θ log Pθ(τ)R(τ)]

y = Pθ(x)
max

θ
. U(θ) = f(Pθ(x))

∇U(θ) =
df(Pθ(x))

dθ
=

df(y)
dy

dy
dθ

∇U(θ) =
d𝔼∑t Qπ(St, πθ(St))

dθ
= 𝔼∑

t

dQπ(St, a)
da

dπθ(St)
dθ

a = πθ(s)

max
θ

. U(θ) = 𝔼∑
t

Qπ(St, πθ(St))

Likelihood ratio gradient estimator

Chain rule of derivatives

∂U(θ, ϕ)
∂θ

=
∂𝔼∑t Qϕ(St, πθ(St))

∂θ
= 𝔼∑

t

∂Qϕ(St, a)
∂a

dπθ(St)
dθ

a = πθ(s)

max
θ,ϕ

U(θ, ϕ) = 𝔼∑
t

Qϕ(St, πθ(St))

∂U(θ, ϕ)
∂ϕ

=
∂𝔼∑t Qϕ(St, πθ(St))

∂ϕ
= 𝔼∑

t

∂Qϕ(St, a)
∂ϕ



s

s a

Deep Deterministic Policy Gradients

ϕ

θ

Qϕ(s, πθ(a))

∂U(θ, ϕ)
∂θ

=
∂𝔼∑t Qϕ(St, πθ(St))

∂θ
= 𝔼∑

t

∂Qϕ(St, a)
∂a

dπθ(St)
dθ

∂U(θ, ϕ)
∂ϕ

=
∂𝔼∑t Qϕ(St, πθ(St))

∂ϕ
= 𝔼∑

t

∂Qϕ(St, a)
∂ϕ



Computing the policy gradient
max

θ
. U(θ) = 𝔼x∼Pθ(x) f(x) max

θ
. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇U(θ) = 𝔼x∼Pθ(x) ∇θ log Pθ(x)f(x) ∇U(θ) = 𝔼τ∼Pθ(τ) [∇θ log Pθ(τ)R(τ)]

y = Pθ(x)
max

θ
. U(θ) = f(Pθ(x))

∇U(θ) =
df(Pθ(x))

dθ
=

df(y)
dy

dy
dθ

∇U(θ) =
d𝔼∑t Q(St, πθ(St))

dθ
= 𝔼∑

t

dQ(St, a)
da

dπθ(St)
dθ

a = πθ(s)

max
θ

. U(θ) = 𝔼∑
t

Q(St, πθ(St))

Likelihood ratio gradient estimator

Chain rule of derivatives

max
θ

. U(θ) = 𝔼x∼𝒩(μθ, Σθ) f(x) max
θ

. U(θ) = 𝔼At∼𝒩(μθ(St), σθ(St)) ∑
t

Qπ(St, At)

max
θ

. U(θ) = 𝔼z∼𝒩(0,I) f(μθ + z * σθ) max
θ

. U(θ) = 𝔼z∼𝒩(0,I) ∑
t

Qπ (St, μθ(St) + z * σθ(St))

Re-parametrization for Gaussian policies



Re-parametrization for Gaussian

a ∼ 𝒩(μθ(s), Σθ(s))Instead of: 

z ∼ 𝒩(0,I)a = μθ(s) + z ⊙ σθ(s)We can write:

Why?

𝔼z(μθ(s) + zσθ(s)) = μθ(s)

Varz(μθ(s) + zσθ(s)) = σθ(s)2Because:

da(θ, z)
dθ

=
dμθ(s)

dθ
+ z ⊙

dσθ(s)
dθ

∇θ𝔼z [ρ (a(θ, z), s)] = 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ



Computing the policy gradient
max

θ
. U(θ) = 𝔼x∼Pθ(x) f(x) max

θ
. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇U(θ) = 𝔼x∼Pθ(x) ∇θ log Pθ(x)f(x) ∇U(θ) = 𝔼τ∼Pθ(τ) [∇θ log Pθ(τ)R(τ)]

y = Pθ(x)
max

θ
. U(θ) = f(Pθ(x))

∇U(θ) =
df(Pθ(x))

dθ
=

df(y)
dy

dy
dθ

∇U(θ) =
d𝔼∑t Q(St, πθ(St))

dθ
= 𝔼∑

t

dQ(St, a)
da

dπθ(St)
dθ

a = πθ(s)

max
θ

. U(θ) = 𝔼∑
t

Q(St, πθ(St))

Likelihood ratio gradient estimator

Chain rule of derivatives

Re-parametrization for Gaussian policies
max

θ
. U(θ) = 𝔼x∼𝒩(μθ, Σθ) f(x)

max
θ

. U(θ) = 𝔼z∼𝒩(0,I) f(μθ + z * σθ)

∂U(θ, ϕ)
∂θ

=
∂𝔼z∼𝒩(0,I ) ∑t Qϕ(St, μθ(St) + zσθ(s))

∂θ
= 𝔼z∼𝒩(0,I ) ∑

t

∂Qϕ(St, a)
∂a

d(μθ(St) + zσθ(s))
dθ

max
θ,ϕ

U(θ, ϕ) = 𝔼At∼𝒩(μθ(St), σθ(St)) ∑
t

Qϕ(St, At)

∂U(θ, ϕ)
∂ϕ

=
∂𝔼z∼𝒩(0,I) ∑t Qϕ(St, μθ(St) + zσθ(s))

∂ϕ
= 𝔼z∼𝒩(0,I) ∑

t

∂Qϕ(St, μθ(St) + zσθ(s))
∂ϕ

max
θ,ϕ

U(θ, ϕ) = 𝔼z∼𝒩(0,I) ∑
t

Qϕ(St, μθ(St) + zσθ(s))



z ⇠ N (0, 1)

Stochastic Value Gradients

Learning continuous control by stochastic value gradients, Hees et al.

s

a

ϕ

θ

Qϕ(s, πθ(a))

s

∂U(θ, ϕ)
∂θ

=
∂𝔼z∼𝒩(0,I ) ∑t Qϕ(St, μθ(St) + zσθ(s))

∂θ
= 𝔼z∼𝒩(0,I ) ∑

t

∂Qϕ(St, a)
∂a

d(μθ(St) + zσθ(s))
dθ

∂U(θ, ϕ)
∂ϕ

=
∂𝔼z∼𝒩(0,I) ∑t Qϕ(St, μθ(St) + zσθ(s))

∂ϕ
= 𝔼z∼𝒩(0,I) ∑

t

∂Qϕ(St, μθ(St) + zσθ(s))
∂ϕ



Actor-criticActor-critic algorithms (with discount)

1. Sample trajectories {si
t , ai

t}T
i=0 by running the current policy a ∼ πθ(s)

2. Fit value function Vπ
ϕ(s) by MC or TD estimation (update ϕ)

3. Compute advantages Aπ(si
t , ai

t) = R(si
t , ai

t) + γVπ
ϕ(si

t+1) − Vπ
ϕ(si

t)

4. ∇θU(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(αi
t |si

t)Aπ(si
t , ai

t)

5. θ′� = θ + α∇θU(θ)



Architecture design

two network design + simple & stable
- no shared features between actor & critic

shared network design

Actor-criticActor-critic
Actor-critic algorithms (with discount)

1. Sample trajectories {si
t , ai

t}T
i=0 by running the current policy a ∼ πθ(s)

2. Fit value function Vπ
ϕ(s) by MC or TD estimation (update ϕ)

3. Compute advantages Aπ(si
t , ai

t) = R(si
t , ai

t) + γVπ
ϕ(si

t+1) − Vπ
ϕ(si

t)

4. ∇θU(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(αi
t |si

t)Aπ(si
t , ai

t)

5. θ′� = θ + α∇θU(θ)

Figure from Sergey Levine



Online actor-critic in practice

works best with a batch (e.g., parallel workers)

synchronized parallel actor-critic asynchronous parallel actor-critic

Actor-criticActor-critic
Actor-critic algorithms (with discount)

1. Sample trajectories {s(i)
t , a(i)

t }T
i=0 by running the current policy a ∼ πθ(s)

2. Fit value function Vπ
ϕ(s) by MC or TD estimation (update ϕ)

3. Compute advantages Aπ(s(i)
t , a(i)

t ) = R(s(i)
t , a(i)

t ) + γVπ
ϕ(s(i)

t+1) − Vπ
ϕ(s(i)

t )

4. ∇θU(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )Aπ(s(i)
t , a(i)

t )

5. θ′� = θ + α∇θU(θ)

Online actor-critic in practice

works best with a batch (e.g., parallel workers)

synchronized parallel actor-critic asynchronous parallel actor-critic

Figure from Sergey Levine



Critics are state dependent baselines

Critics as state-dependent baselines

+ no bias
- higher variance (because single-sample estimate)

+ lower variance (due to critic)
- not unbiased (if the critic is not perfect)

+ no bias
+ lower variance (baseline is closer to rewards)You’ll implement this for HW2!

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(α(i)
t |s(i)

t )(R(s(i)
t , a(i)

t ) + γVπ(s(i)
t+1) − Vπ(s(i)

t ))

̂g =
1
N

N

∑
i=1

T

∑
t=0

∇θlog πθ(a(i)
t |s(i)

t )(Gi
t − b(s(i)

t ))

Critics as state-dependent baselines

+ no bias
- higher variance (because single-sample estimate)

+ lower variance (due to critic)
- not unbiased (if the critic is not perfect)

+ no bias
+ lower variance (baseline is closer to rewards)You’ll implement this for HW2!

̂g =
1
N

N

∑
i=1

T

∑
t=0

∇θlog πθ(a(i)
t |s(i)

t )(Gi
t − b)

Critics as state-dependent baselines

+ no bias
- higher variance (because single-sample estimate)

+ lower variance (due to critic)
- not unbiased (if the critic is not perfect)

+ no bias
+ lower variance (baseline is closer to rewards)You’ll implement this for HW2!

Figure from Sergey Levine



Policy Gradient 
‣ Let U(θ) be any policy objective function 

‣ Policy gradient algorithms search for a local 
maximum in U(θ) by ascending the gradient of 
the policy, w.r.t. parameters θ 

Δθ = α∇θU(θ)
θnew = θold + Δθ

α is a step-size 
parameter (learning 
rate) 

is the policy gradient 

∇θU(θ)

∂U(θ)
∂θ1

∂U(θ)
∂θn

Policy gradient: the gradient of the policy objective w.r.t. the parameters of the policy

This lecture is all about 
the stepsize



What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Policy Gradients

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)

θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy 
2. Estimate advantages 
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ
This lecture is all about 
the stepsize



\What is the underlying objective function?
̂g ≈

1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )A(s(i)
t , a(i)

t ), τi ∼ πθ

Policy gradients:

This result from differentiating the following objective function:

UPG(θ) =
1
N

N

∑
i=1

T

∑
t=1

log πθ(α(i)
t |s(i)

t )A(s(i)
t , a(i)

t ) τi ∼ πθ

This maximizes the probability of expert actions in the training set.

Compare this to supervised learning using expert actions            and a maximum 
likelihood objective:

USL(θ) =
1
N

N

∑
i=1

T

∑
t=1

log πθ(α̃(i)
t |s(i)

t ), τi ∼ π* (+regularization)

ã ∼ π*

We want to optimize both objectives using gradient descent

θ′� = θ + α∇θU(θ)

Choosing stepsize a is more critical for RL than for SL.
Why?
Because we cannot optimize it too far, our advantage estimates come from πθold



Policy Gradients

Two problems:
1. Hard to choose stepwise 
2. Sample inefficient: we cannot use data 

collected with policies of previous 
iterations

ϵ

θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy 
2. Estimate advantages 
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)



Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Hard to choose stepsizes

• Step too big
 Bad policy->data collected under bad 
policy-> we cannot recover
(in Supervised Learning, data does not 
depend on neural network weights)

• Step too small
Not efficient use of experience
(in Supervised Learning, data can be 
trivially re-used)

θnew = θold + α ⋅ ̂g

Gradient descent in parameter space 
does not take into account the 
resulting distance in the (output) policy 
space between             andπθold

(s) πθnew
(s)

θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy 
2. Estimate advantages 
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ

θold

θnew

μθ(s)
σθ(s)

σθnew
(s)

μθnew
(s)



Hard to choose stepsizes

θnew = θold + α ⋅ ̂g

The Problem is More Than Step Size

Consider a family of policies with parametrization:

⇡✓(a) =

⇢
�(✓) a = 1
1� �(✓) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 9 / 41

1. Collect trajectories for policy 
2. Estimate advantages 
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ

θnew = θ + ϵ ⋅ ̂g

The same parameter step                    changes the policy distribution more or less dramatically 
depending on where in the parameter space we are. 

Δθ = − 2
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Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Notation

θnew = θold + α ⋅ ̂g

We will use the following to denote values of parameters and corresponding policies before 
and after an update:

θold → θnew
πold → πnew

θ → θ′�

π → π′�



Gradient Descent in Parameter Space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

d * = arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

µ✓(s)

�✓(s)θ

The stepwise in gradient descent results from solving the following optimization problem, e.g., 
using line search:

Euclidean distance in parameter space
θnew = θold + d *SGD:

d * = arg max
∥d∥≤ϵ

J(θ + d)

It is hard to predict the result on the parameterized distribution.. hard to pick the threshold 
epsilon



Gradient Descent in Distribution Space
The stepwise in gradient descent results from solving the following optimization problem, e.g., 
using line search:

d * = arg max
d, s.t. KL(πθ∥πθ+d)≤ϵ

J(θ + d)

Euclidean distance in parameter space

∇θ JPG(θ)
∥∇θ JPG(θ)∥

= lim
ϵ→0

1
ϵ

arg min
∥α ̂g∥≤ϵ

JPG(θ + α ̂g)

θnew = θold + d *SGD:
d * = arg min

∥α ̂g∥≤ϵ
JPG(θ + α ̂g)

d * = arg max
∥d∥≤ϵ

J(θ + d)

KL divergence in distribution space

It is hard to predict the result on the parameterized distribution.. hard to pick the threshold 
epsilon

Natural gradient descent: the stepwise in parameter space is determined by 
considering the KL divergence in the distributions before and after the update:

Easier to pick the distance threshold!!!



Solving the KL Constrained Problem

First order Taylor expansion for the loss and second order for the KL:

d * = arg max
d

U(θ + d) − λ(DKL [πθ∥πθ+d] − ϵ)

Unconstrained penalized objective:

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d) + λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ



Taylor expansion of KL
DKL(pθold

|pθ) ≈ DKL(pθold
|pθold

) + d⊤ ∇θDKL(pθold
|pθ) |θ=θold

+
1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x) )



Taylor expansion of KL
DKL(pθold

|pθ) ≈ DKL(pθold
|pθold

) + d⊤ ∇θDKL(pθold
|pθ) |θ=θold

+
1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)
DKL(pθold

|pθ) = 𝔼x∼pθold
log (

Pθold
(x)

Pθ(x) )



Taylor expansion of KL
DKL(pθold

|pθ) ≈ DKL(pθold
|pθold

) + d⊤ ∇θDKL(pθold
|pθ) |θ=θold

+
1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

KL(pθ |pθ+d) = ∑
x

P(x |θ)log
P(x |θ)

P(x |θ + δθ)

∇θDKL(pθold
|pθ) |θ=θold

= −∇θ𝔼x∼pθold
log Pθ(x) |θ=θold

+ ∇θ𝔼x∼pθold
log Pθold

(x) |θ=θold

DKL(pθold
|pθ) = 𝔼x∼pθold

log (
Pθold

(x)
Pθ(x) )



Taylor expansion of KL
DKL(pθold

|pθ) ≈ DKL(pθold
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Fisher Information Matrix

∇2
θ′�( − ∫ p(x |θ)log(p(x |θ′�))

F(θ) = 𝔼θ [∇θlog pθ(x)∇θlog pθ(x)⊤]

Exactly equivalent to the Hessian of KL divergence!

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

=
1
2

d⊤F(θold)d

=
1
2

(θ − θold)⊤F(θold)(θ − θold)

Since KL divergence is roughly analogous to a distance measure between 
distributions, Fisher information serves as a local distance metric between 
distributions:  how much you change the distribution if you move the parameters a 
little bit in a given direction.

F(θold) = ∇2
θDKL(pθold

|pθ) |θ=θold



First order Taylor expansion for the loss and second order for the KL:

d * = arg max
d

U(θ + d) − λ(DKL [πθ∥πθ+d] − ϵ)

Unconstrained penalized objective:

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d) + λϵ

= arg max
d

∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤F(θold)d)

= arg min
d

− ∇θU(θ) |θ=θold
⋅ d +

1
2

λ(d⊤F(θold)d)

Substitute for the information matrix:

Solving the KL Constrained Problem



The natural gradient:

Natural Gradient Descent
Setting the gradient to zero:

0 =
∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

∇̃J(θ) = F−1(θold)∇θ J(θ)

θnew = θold + α ⋅ F−1(θold) ̂g

DKL(πθold
|πθ) ≈

1
2

(θ − θold)⊤F(θold)(θ − θold)

1
2

(αgN)⊤F(αgN) = ϵ

α =
2ϵ

(g⊤
NFgN)



Natural Gradient Descent

Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation

ϵ

Both use samples from the current policy πk = π(θk)



Natural Gradient Descent

Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation

ϵ

very expensive to compute for a large number of parameters!



Policy Gradients
Monte Carlo Policy Gradients (REINFORCE), gradient direction:

What Loss to Optimize?

I Policy gradients

ĝ = Êt

h
r✓ log ⇡✓(at | st)Ât

i

I Can di↵erentiate the following loss

LPG (✓) = Êt

h
log ⇡✓(at | st)Ât

i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�
.

at ✓ = ✓old, state-actions are sampled using ✓old. (IS = importance sampling)

Just the chain rule: r✓ log f (✓)
��
✓old

=
r✓f (✓)

��
✓old

f (✓old)
= r✓

⇣
f (✓)

f (✓old)

⌘��
✓old

Actor-Critic Policy Gradient: ̂g = �̂�t [∇θ log πθ(at |st)Aw(st)]

θold

θnew

μθold
(s)

σθold
(s)

σθnew
(s)

μθnew
(s)

θnew = θold + ϵ ⋅ ̂g

1. Collect trajectories for policy 
2. Estimate advantages 
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθold



Policy Gradients

θold

θnew

μθold
(s)

σθold
(s)

σθnew
(s)

μθnew
(s)

θnew = θold + ϵ ⋅ ̂g

1. Collect trajectories for policy 
2. Estimate advantages 
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθold

• On policy learning can be extremely 
inefficient

• The policy changes only a little bit with 
each gradient step

• I want to be able to use earlier data..how 
to do that?



U(θ) = 𝔼τ∼πθ(τ) [R(τ)]
= ∑

τ

πθ(τ)R(τ)

= ∑
τ

πθold
(τ)

πθ(τ)
πθold

(τ)
R(τ)

= 𝔼τ∼πθold

πθ(τ)
πθold

(τ)
R(τ)

∇θU(θ) = 𝔼τ∼πθold

∇θπθ(τ)
πθold

(τ)
R(τ)

Off-policy learning with Importance Sampling

<-Gradient evaluated at theta_old is unchanged∇θU(θ) |θ=θold
= 𝔼τ∼πθold

∇θ log πθ(τ) |θ=θold
R(τ)



U(θ) = 𝔼τ∼πθ(τ) [R(τ)]
= ∑

τ

πθ(τ)R(τ)

= ∑
τ

πθold
(τ)

πθ(τ)
πθold

(τ)
R(τ)

= ∑
τ∼πθold

πθ(τ)
πθold

(τ)
R(τ)

= 𝔼τ∼πθold

πθ(τ)
πθold

(τ)
R(τ)

Off policy learning with Importance Sampling

U(θ) = 𝔼τ∼πθold

T

∑
t=1

t

∏
t′�=1

πθ(a′ �t |s′�t)
πθold

(a′ �t |s′�t)
̂At

πθ(τ)
πθold

(τ)
=

T

∏
i=1

πθ(at |st)
πθold

(at |st)

∇θU(θ) |θ=θold
= 𝔼τ∼πθold

∇θ log πθ(τ) |θ=θold
R(τ)

∇θU(θ) = 𝔼τ∼πθold

∇θπθ(τ)
πθold

(τ)
R(τ)



Trust Region Policy Optimization

I Define the following trust region update:

maximize
✓

Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�

subject to Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]]  �.

I Also worth considering using a penalty instead of a constraint

maximize
✓

Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�
� �Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]]

I Method of Lagrange multipliers: optimality point of �-constrained problem
is also an optimality point of �-penalized problem for some �.

I In practice, � is easier to tune, and fixed � is better than fixed �

Trust region Policy Optimization

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releases

Again the KL penalized problem!

Define the constrained objective:



Trust Region Policy Optimization

• Police gradients: have a function approximation for the            
policy              and optimize use SGD. SGD is sufficient to learn 
great object object detectors for example. What is different in RL? 

• Non-stationarity in RL: Each time the policy changes the state 
visitation distribution changes. And this can cause the policy to 
diverge!

• Contribution: theoretical and practical method of how big of a step 
our gradient can take.

Police gradients with monotonic guarantees!

Trust Region Policy Optimization, Schulman et al. 2015

⇡✓(u|x)



Solving KL Penalized Problem

I maximize✓ L⇡✓old
(⇡✓)� � ·KL⇡✓old

(⇡✓)

I Make linear approximation to L⇡✓old
and quadratic approximation to KL term:

maximize
✓

g · (✓ � ✓old)� �
2 (✓ � ✓old)

TF (✓ � ✓old)

where g =
@

@✓
L⇡✓old

(⇡✓)
��
✓=✓old

, F =
@2

@2✓
KL⇡✓old

(⇡✓)
��
✓=✓old

I Quadratic part of L is negligible compared to KL term
I F is positive semidefinite, but not if we include Hessian of L

I Solution: ✓ � ✓old = 1
�F

�1g , where F is Fisher Information matrix, g is

policy gradient. This is called the natural policy gradient3.

3S. Kakade. “A Natural Policy Gradient.” NIPS. 2001.

Solving KL penalized problem

Exactly what we saw with natural policy gradient!
One important detail!

Trust region Policy Optimization



Trust Region Policy Optimization

Small problems with NPG update:
Might not be robust to trust region size �; at some iterations � may be too large and
performance can degrade
Because of quadratic approximation, KL-divergence constraint may be violated

Solution:
Require improvement in surrogate (make sure that L✓k (✓k+1) � 0)
Enforce KL-constraint

How? Backtracking line search with exponential decay (decay coe↵ ↵ 2 (0, 1), budget L)

Algorithm 2 Line Search for TRPO

Compute proposed policy step �k =
q

2�

ĝT
k
Ĥ
�1
k

ĝk

Ĥ
�1
k

ĝk

for j = 0, 1, 2, ..., L do

Compute proposed update ✓ = ✓k + ↵j�k

if L✓k (✓) � 0 and D̄KL(✓||✓k)  � then

accept the update and set ✓k+1 = ✓k + ↵j�k

break
end if

end for
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Trust region Policy Optimization
Due to the quadratic approximation, the KL constraint may be violated!  What if we just do a 
line search to find the best stepsize, making sure:
• I am improving my objective J(\theta)
• The KL constraint is not violated!

Trust Region Policy Optimization

I Define the following trust region update:

maximize
✓

Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�

subject to Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]]  �.

I Also worth considering using a penalty instead of a constraint

maximize
✓

Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�
� �Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]]

I Method of Lagrange multipliers: optimality point of �-constrained problem
is also an optimality point of �-penalized problem for some �.

I In practice, � is easier to tune, and fixed � is better than fixed �



Trust Region Policy Optimization

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting
it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters ✓0
for k = 0, 1, 2, ... do

Collect set of trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian-vector product function f (v) = Ĥkv

Use CG with ncg iterations to obtain xk ⇡ Ĥ
�1
k

ĝk

Estimate proposed step �k ⇡

q
2�

xT
k
Ĥk xk

xk

Perform backtracking line search with exponential decay to obtain final update

✓k+1 = ✓k + ↵j�k

end for
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Trust region Policy Optimization
TRPO= NPG +Linesearch



Trust Region Policy Optimization

Trust Region Policy Optimization is implemented as TNPG plus a line search. Putting
it all together:

Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters ✓0
for k = 0, 1, 2, ... do

Collect set of trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Form sample estimates for

policy gradient ĝk (using advantage estimates)

and KL-divergence Hessian-vector product function f (v) = Ĥkv

Use CG with ncg iterations to obtain xk ⇡ Ĥ
�1
k

ĝk

Estimate proposed step �k ⇡

q
2�

xT
k
Ĥk xk

xk

Perform backtracking line search with exponential decay to obtain final update

✓k+1 = ✓k + ↵j�k

end for
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Trust region Policy Optimization
TRPO= NPG +Linesearch+monotonic improvement theorem!



Proximal Policy Optimization
Can I achieve similar performance without second order information (no Fisher matrix!)

Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of methods that approximately enforce
KL constraint without computing natural gradients. Two variants:

Adaptive KL Penalty
Policy update solves unconstrained optimization problem

✓k+1 = argmax
✓

L✓k (✓)� �k D̄KL(✓||✓k )

Penalty coe�cient �k changes between iterations to approximately enforce
KL-divergence constraint

Clipped Objective
New objective function: let rt(✓) = ⇡✓(at |st)/⇡✓k (at |st). Then

LCLIP

✓k
(✓) = E

⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t
, clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t
)
i#

where ✏ is a hyperparameter (maybe ✏ = 0.2)
Policy update is ✓k+1 = argmax✓ LCLIP

✓k
(✓)
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Proximal Policy Optimization with Adaptive KL Penalty

Algorithm 4 PPO with Adaptive KL Penalty

Input: initial policy parameters ✓0, initial KL penalty �0, target KL-divergence �
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Compute policy update

✓k+1 = argmax
✓

L✓k (✓)� �kD̄KL(✓||✓k)

by taking K steps of minibatch SGD (via Adam)
if D̄KL(✓k+1||✓k) � 1.5� then

�k+1 = 2�k

else if D̄KL(✓k+1||✓k)  �/1.5 then

�k+1 = �k/2
end if

end for

Initial KL penalty not that important—it adapts quickly
Some iterations may violate KL constraint, but most don’t
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PPO: Adaptive KL Penalty

Don’t use second order approximation for Kl which is 
expensive, use standard gradient descent



Proximal Policy Optimization: Clipping Objective

I Recall the surrogate objective

LIS(✓) = Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�
= Êt

h
rt(✓)Ât

i
. (1)

I Form a lower bound via clipped importance ratios

LCLIP(✓) = Êt

h
min(rt(✓)Ât , clip(rt(✓), 1� ✏, 1 + ✏)Ât)

i
(2)

I Forms pessimistic bound on objective, can be optimized using SGD

PPO: Clipped Objective
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Proximal Policy Optimization with Clipped Objective

But how does clipping keep policy close? By making objective as pessimistic as possible
about performance far away from ✓k :

Figure: Various objectives as a function of interpolation factor ↵ between ✓k+1 and ✓k after one
update of PPO-Clip 9

9Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
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Proximal Policy OptimizationPPO: Clipped Objective



Proximal Policy Optimization with Clipped Objective

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters ✓0, clipping threshold ✏
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy ⇡k = ⇡(✓k)
Estimate advantages Â⇡k

t using any advantage estimation algorithm
Compute policy update

✓k+1 = argmax
✓

L
CLIP

✓k (✓)

by taking K steps of minibatch SGD (via Adam), where

L
CLIP

✓k (✓) = E
⌧⇠⇡k

"
TX

t=0

h
min(rt(✓)Â

⇡k

t , clip (rt(✓), 1� ✏, 1 + ✏) Â⇡k

t )
i#

end for

Clipping prevents policy from having incentive to go far away from ✓k+1

Clipping seems to work at least as well as PPO with KL penalty, but is simpler to
implement
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PPO: Clipped Objective



Empirical Performance of PPO

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 10
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PPO: Clipped Objective



Summary
• Gradient Descent in Parameter VS distribution space
• Natural gradients: we need to keep track of how the KL changes 

from iteration to iteration
• Natural policy gradients
• Clipped objective works well 
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