
09-723 Proximal probe techniques.                        Name__________________________ 
 
Homework #3.   
 
Due by 6:30 PM, Tuesday, September 21, 2004 
 
Download the DrivenExplorer.zip file which contains all necessary Matlab files by clicking on it 
and choosing to save it on your computer (e.g. on your desktop). Open the archive on your 
computer and extract it to some folder. Make sure that a path is set in Matlab to this folder. To set 
a path, choose the set path option in the file menu of Matlab. Click the Add with subfolders 
button and locate the folder to be added to the path in the pop-up window and click OK. Then 
click Save and Close. 
 
As usual, please contact me if you have any problems with the installation or any other 
problems with using the program. 
justinl@andrew.cmu.edu 
phone: 8-9175 
 



DrivenHarmonicExplorer (Some Assembly Required) 
 
In its basic state, DrivenHarmonicExplorer allows you to generate solutions of the 
equations of motion of mass (Mtip) attached to a spring with a spring constant (Kspring), 
subjected to damping (Bdamp), driven at a specific frequency with specified drive 
amplitude based on the following equation: 

cos(2 )tip damp spring o operM z B z K z F F tπ ϕ+ + = +�� �  
All necessary parameters are entered through the provided Graphical User Interface 
(GUI), which also controls the execution of the Simulink model, which you will need to 
construct in Simulink, following the directions provided in class. Make sure that in your 
model you call the variables as follows: 
 
Mass: Mtip (This is to make it easier to build this as the tip mass in later models) 
Spring constant: Kspring 
Damping Coefficient: Bdamp 
The simulation step (Fixed-step size): SimStep 
The total simulation time (i.e. Stop Time)= SimTime 
The initial velocity = Zprime (initial condition for the first integrator) 
The initial position = Zstart (initial condition for the second integrator) 
The position trajectory = Ztraj 
The time = time 
The driving force amplitude = Fo 
The drive frequency (operating frequency in Hz) = Foper 
The phase ϕ   = Phi 
 
If these names are not used, the GUI will not work. 
All other variables will be defined through the GUI. 
Steps in construction of your model: 
 
I. Add a drive to your harmonic oscillator model from homework #2. 
 
This model needs to be saved as DriveHarmOscModel.mdl for the GUI to work later. 
Make sure the model is saved in the path of Matlab. (DO NOT SAVE OVER YOUR OLD 
MODEL.) The easiest way to do this is to save the model in the folder that you extracted 
HarmonicExplorer into. You should have already set a path to this folder. 
 
Before running the model you need to provide the values of other parameters using the 
provided GUI. To use the GUI provided, the workspace needs to be prepared to receive 
the parameters generated by the GUI. This is accomplished by running SimPrep2 from 
command line.  
 
>> SimPrep2



(If you look inside this m-file, you will see a list of variable being declared as globals. New 
variables were needed to add the FFT function to the GUI, which required a new m-file to set the 
workspace) 
To open the GUI, from command line type DHO_GUI
 
>> DHO_GUI
 
The following interface should appear. 

 
 
If everything is set up, you should be able to run a simulation using the default setting by 
clicking the Run Sim button. The following figure should appear: 

 
 
If you see this plot, you should be able to run a FFT analysis using the FFT analysis 
button. The following figure should appear: 

This GUI is similar to the HarmOscGUI from 
Homework #2, but it has textboxes to adjust the 
three new parameters: 
Fo
Foper
Phi
Also, it has an FFT analysis button for Fourier 
transform calculations. 



 
Now, you can freely change parameters to see what happens. Ncycles determines the 
number of cycles you will simulate. PtsPerCycle will determine the resolution at which 
each cycle will be simulated. All other scaling is taken care of in the GUI. 
 
Specific values of points can be recovered from any trajectory by using the Take Points 
button. You will be prompted for the number of points you wish to take. Enter the 
number of points you would like to take and press OK. For example, if you want 5 points, 
enter 5 and press OK. Next, crosshairs will appear on the trajectory figure. Line the cross 
hairs up on the point you want and left click the mouse. You will need to do this for each 
point you want. For example, if you chose to collect 5 points, you will need to click 5 
points on the figure before they will be retrieved. These points are placed in the 
workspace in a matrix called PointMat. The first column corresponds to time, the 
second to z. You may also use the Data Cursor icon on the figure to determine points on 
any plot (this is actually more accurate). 

 
 
The following exercises will have you use simulations to explore the relationships 
between different parameters and the trajectory of a driven harmonic oscillator. 
Eventually, these relationships will be rigorously derived in class. 

 
 
 
 
 
 
 
 



Part I 
Explorations with user-defined parameters. 

 
1.1 Set Kspring to 1, Bdamp to 0.3, Mtip to 1, Ncycles to 50, PtsPerCycle to 64, 

Zstart to 0, Zprime to 0, Fo to 1, Foper to 1 0.1592
2π

≈ , and Phi to 0. 

 
a) The resonance frequency rf at which the system will be on resonance is  

1 Hz
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rf

ω
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= = .  Map the resonance peak by running the program at this frequency 

and frequencies rf f± ∆ below and above rf  (five above and five below, use the value of 
0.003 Hzf∆ = ).  For each case measure the oscillation amplitude A from the plot.  Make 

the plot of ( )A f .   
 
b) Make analogous calculations for Bdamp=0.05.  This time use the smaller step 

0.0005 Hzf∆ =  . 
c) Compare both resonance peaks and try to reason why their heights and widths 

are so different.   
 
d) Compare side by side the trajectory plots of z(t) on resonance for Bdamp = 0.3 

and 0.05.  In which case the system reaches the steady state faster?   
 
 
1.2 Take any lightly damped oscillator and determine what is the driving force amplitude 

Fo to achieve the same target oscillation amplitude at different frequencies f ranging 
from far below to far above resonance.  Make a plot of ( )Fo f .  Compare its shape 
with the shape of the curve obtained in 1.1 (a or b) and comment on your 
observations. 

 



Part 2 
Exploring FFT 

 
 
In this series of problems you will be getting acquainted with Fourier transform ( )ωℑ , 
which decomposes the function ( )f t  defined in time domain into its harmonic 
components in the frequency domain: 

( ) ( )exp( )f t i t dtω ω
+∞

−∞

ℑ = −∫  

This capability of Fourier transform makes it extremely useful in analyzing periodic time 
series (or periodic structures in space).  We will be using it for both of these purposes.   
 
For discrete signals ( )k kf f t≡ , defined at equally-spaced times kt k≡ ∆ ,  
with k = 0, ..., N-1    where ∆ is the time step we deal with the discrete Fourier transform 
(DFT).   The frequency range of DFT is defined as   
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and the values of Fourier transform at nν are given by 
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Solve the following problems using the supplied m-file ExploreFFT.m that was shown 
in class.  Illustrate your answers with graphical output.  Note: There is no GUI for this m-
file.  You are responsible for modifying it appropriately (most of the time, this will 
involve manipulating the form of your waveform, which is given in line 10). In some 
instances you will also have to change the values of some parameters, such as a, 
calculation step TimeStep, etc.  To do so, find the respective lines in the m-file and set 
the values by changing them appropriately.  In order to modify and execute the m-file, 
make sure that it is in the path and open it in Matlab.  After modifying the file you need 
to save it before executing it (saving/executing can be done in one step by using F5 key, 
which is a shortcut to Save and Run).   
 

 
2.1. Calculate the FFT of sin(a*t) for different values of a (and in each case 

note the position of peak maximum. Inspect the magnitude plot.  At what 
frequencies does it show the maxima?  By recording the position of a maximum 
occurring at positive values of frequency (the other one lies symmetrically) as a 
function of a, determine the relationship between the maximum position and a.
What is the conversion factor?  What does its value indicate? 

 



 
2.2. Calculate the FFT of the sum of two or more sine or cosine waves with different 

frequencies.  Where are the maxima now? 
 
 

2.3. Calculate the FFT of a few weighted sums of sine and cosine waves (e.g., 
2sin(5 ) 3cos(2 )t t+ ).  In addition to positions of the maxima, now note also their 
heights.  What is the relationship between the height of maxima and weighting 
factors? 

 
2.4. Now add some constant factor to your signal (e.g. sin( ) 10t + ).  What happened?  

Justify why the new feature of the spectrum appeared at the frequency where it 
did.  Explore how the height of this feature depends on the value of the constant 
factor. 

 
 
2.5.Explore what is the impact of multiplying the sine wave by the decaying exponent 

(e.g., sin( )exp( / 2)t t− ).  Try to determine what is the impact of the exponent 
factor on the shape of the FFT peak.  Do you see any analogies with resonance 
peaks of damped harmonic oscillators?  Can you justify it?  

 
2.6. So far we have been focusing on the magnitude of FFT.  Now we will explore the 

role of phase of the signal on the real and imaginary part of FFT.  Calculate FFTs 
of signals shifted by various amounts (most conveniently by some integer 
products of / 2π ).   Summarize your observations and describe how FFT can be 
used to determine the phase of the signal.  

 
2.7.Now let us examine the impact of the length of time series (or more accurately the 

role of the number of cycles it contains) on the quality of the FFT of the signal.  
For a chosen signal vary the time scale, to include a range of cycles (from a few to 
a few hundred).  Start from some small number of cycles (e.g. 10), calculate the 
FFT and manually set the frequency range to center one of the peaks and have its 
full width at the bottom pretty much fill the axis range.  Now carry out your 
calculations for longer and longer time series.  Summarize your observations.  

 
2.8.In this last problem we will try to determine what is the role of time step with 

respect to the length of the cycle.  Calculate the FFT of some chosen signal under 
conditions when you have at least 100 points per cycle.  As before, center the 
peak and observe what happens when you decrease the number of points per 
cycle.  What has the larger impact on the quality of the FFT peak: the sampling 
density (number of points per cycle) or the total number of cycles in the series?  
Can you justify your answer using some common sense? 

 
 
 
 



Part 3 
FFT of Simulated Trajectories 

 
A series of problems exploring how Fourier analysis can be used to study simulated 
trajectories. 
 
 
3.1 Set Bdamp to 0.0, Ncycles to 50, PtsPerCycle to 64, Zstart to 1, Zprime to 0, Drive 
to 0, Foper to 0, and Phi to 0. 
 

(a) For Mtip=1, see how the natural frequency shifts when Kspring is 0.1, 1, and 10 
using fourier analysis. Comment. 

(b) For Kspring =1, see how the natural frequency shifts when Mtip is 0.1, 1, and 10 
using fourier analysis. Comment. 

 
3.2 Set Kspring to 1, Mtip to 1, Ncycles to 1000, PtsPerCycle to 256, Zstart to 1, 
Zprime to 0, Drive to 0, Foper to 0, and Phi to 0. 
 
Using Fourier analysis, see the effect of Bdamp (set it to 0.1, 0.05, and 0.01) on the 
width of the harmonic peak in the FFT.  Comment. 
 
 

  
 

 
 


