2.3 An ideal gas originally at 0.85 atm and 66°C was allowed to expand until its final volume, pressure, and temperature were 94 mL, 0.60 atm, and 45°C, respectively. What was its initial volume?

Because n is kept constant, the ideal gas equation PV = nRT can be rewritten as

$$\frac{PV}{T} = \text{constant}$$

or

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Therefore,

$$V_1 = \frac{P_2 V_2}{T_2} \frac{T_1}{P_1} = \frac{(0.60 \text{ atm}) (94 \text{ mL})}{(273 + 45) \text{ K}} \frac{(273 + 66) \text{ K}}{0.85 \text{ atm}} = 71 \text{ mL}$$

2.35 A healthy adult exhales about 5.0×10^2 mL of a gaseous mixture with every breath. Calculate the number of molecules present in this volume at 37° C and 1.1 atm. List the major components of this gaseous mixture.

First calculate the number of moles of molecules, from which the number of molecules can be obtained.

$$n = \frac{PV}{RT} = \frac{(1.1 \text{ atm}) \left(5.0 \times 10^2 \text{ mL}\right) \left(\frac{1 \text{ L}}{1000 \text{ mL}}\right)}{\left(0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}\right) (273 + 37) \text{ K}} = 0.0216 \text{ mol}$$

Number of molecules = (0.0216 mol) $\left(\frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol}}\right) = 1.3 \times 10^{22} \text{ molecules}$

The major components of exhaled air are CO2, O2, N2, and H2O.

3.3 Show that 1 L atm = 101.3 J.

The units conversion can be performed using R expressed in L atm and J, respectively.

$$R = 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1} = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

 $1 \text{ L atm} = \frac{8.314 \text{ J}}{0.08206} = 101.3 \text{ J}$

3.17 At 373.15 K and 1 atm, the molar volume of liquid water and steam are 1.88×10^{-5} m³ and 3.06×10^{-2} m³, respectively. Given that the heat of vaporization of water is 40.79 kJ mol⁻¹, calculate the values of ΔH and ΔU for 1 mole in the following process:

$$H_2O(I, 373.15 \text{ K}, 1 \text{ atm}) \rightarrow H_2O(g, 373.15 \text{ K}, 1 \text{ atm})$$

 ΔH for the above process is the heat of vaporization, that is, $\Delta H = 40.79$ kJ for 1 mole of water.

It is necessary to calculate w and q before determining ΔU . Since the process occurs at constant pressure, $q=\Delta H=40.79$ kJ when 1 mol liquid ${\rm H_2O}$ vaporizes. In the same process,

$$\begin{split} w &= -P_{\rm ex} \Delta V \\ &= - (1.00 \text{ atm}) \left(3.06 \times 10^{-2} \text{ m}^3 - 1.88 \times 10^{-5} \text{ m}^3 \right) \left(\frac{1000 \text{ L}}{1 \text{ m}^3} \right) \left(\frac{101.3 \text{ J}}{1 \text{ L atm}} \right) \\ &= -3.098 \times 10^3 \text{ J} \end{split}$$

Note that we could have safely ignored the volume of liquid $\rm H_2O$, since it is negligible compared with that of gaseous $\rm H_2O$ above.

Using the first law,

$$\Delta U = q + w = 40.79 \text{ kJ} - 3.098 \text{ kJ} = 37.69 \text{ kJ}$$

3.31 The following diagram represents the P-V changes of a gas. Write an expression for the total work done.

The total work done is the sum of the work done against the constant external pressure P_2 when the system expands from V_1 to V_2 , and that against the constant external pressure P_3 when the

system expands from V_2 to V_3 :

$$w = -P_2 (V_2 - V_1) - P_3 (V_3 - V_2)$$