Chapter 5

Monte Carlo Simulations In
Various Ensembles

In a conventional Molecular Dynamics simulation, the total energy E and
the total linear momentum P are constants of motion. Hence, Molecular
Dynamics simulations measure (time) averages in an ensemble that is very
similar to the microcanonical (see [78]); namely, the constant-NVE-P ensem-
ble. In contrast, a conventional Monte Carlo simulation probes the canoni-
cal (i.e., constant-NVT) ensemble. The fact that these ensembles are differ-
ent leads to observable differences in the statistical averages computed in
Molecular Dynamics and Monte Carlo simulations. Most of these differ-
ences disappear in the thermodynamic limit and are already relatively small
for systems of a few hundred particles. However, the choice of ensemble
does make a difference when computing the mean-square value of fluctu-
ations in thermodynamic quantities. Fortunately, techniques exist to relate
fluctuations in different ensembles [73]. Moreover, nowadays it is common
practice to carry out Molecular Dynamics simulations in ensembles other
than the microcanonical. In particular, it is possible to do Molecular Dynam-
ics at constant pressure, at constant stress, and at constant temperature (see
Chapter 6). The choice of ensembles for Monte Carlo simulations is even
wider: isobaric-isothermal, constant-stress-isothermal, grand-canonical (i.e.,
constant-uVT), and even microcanonical [79-84]. A more recent addition
to this list is a Monte Carlo method that employs the Gibbs-ensemble tech-
nigue [85], which was developed to study phase coexistence in moderately
dense (multi component) fluids. The Gibbs-ensemble method is discussed
in detail in Chapter 8.

As explained in section 3.1 the principal idea of importance sampling is
to use a Monte Carlo procedure to generate a random walk in those regions
of phase space that have an important contribution to the ensemble aver-
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ages. The acceptance rules are chosen such that these configurations occur
with a frequency prescribed by the desired probability distribution. In sec-
tion 3.1 it is shown that such a procedure indeed yields the correct distribu-
tion of configurations. Essential in the demonstration that our Monte Carlo
scheme samples the desired distribution is the condition of detailed balance.
To be more precise, detailed balance, in fact, is too strong a condition, but
if detailed balance is obeyed we are guaranteed to have a correct sampling
scheme. It may very well be possible that a scheme that does not obey de-
tailed balance still samples the correct distribution. In a Monte Carlo scheme
errors are easily introduced, so one should be extremely careful. We will give
some examples where we can show that detailed balance is not obeyed and
the results show systematic errors. We have found that we could demon-
strate that detailed balance was not obeyed in all cases where we observed
strange results.

5.1 General Approach

In the following sections, we will use the following procedure to demon-
strate the validity of our Monte Carlo algorithms:

1. Decide which distribution we want to sample. This distribution, de-
noted A, will depend on the details of the ensemble.
2. Impose the condition of detailed balance,

K(o = n) =K(n — o), (5.1.1)

where K(o — n) is the flow of configuration o to n. This flow is given
by the product of the probability of being in configuration o, the prob-
ability of generating configuration n, and the probability of accepting
this move,

K(o = n) =AN(0) x a(0o — n) x acc(o — n). (5.1.2)

3. Determine the probabilities of generating a particular configuration.

4. Derive the condition which needs to be fulfilled by the acceptance
rules.

5.2 Canonical Ensemble

It is instructive to apply the preceding recipe to the ordinary Metropolis
scheme. In the canonical ensemble, the number of particles, temperature,
and volume are constant (see Figure 5.1). The partition function is
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Figure 5.1: Canonical ensemble. The number of particles, volume, and tem-
perature are constant. Shown is a Monte Carlo move in which a particle is
displaced.

QN,V,T) = ﬁ JdrN exp[—pu(r™)], (5.2.1)

where A = \/h2/(2rmkgT) is the thermal de Broglie wavelength. From the
partition function it follows that the probability of finding configuration ™
is given by distribution is

N(rNY) oc exp[—BU(rN)]. (5.2.2)

Equations (5.2.1) and (5.2.2) are the basic equations for a simulation in the
canonical ensemble.

5.2.1 Monte Carlo Simulations

In the canonical ensemble, we have to sample distribution (5.2.2). This can
be done using the following scheme:

1. Select a particle at random and calculate the energy of this configura-
tion U (o).

2. Give this particle a random displacement (see Figure 5.1),
r(o) — r(o) + A(Ranf — 0.5),

where A/2 is the maximum displacement. The value of A should be
chosen such that the sampling scheme is optimal (see section 3.3). The
new configuration is denoted n and its energy U/ (n).
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3. The move is accepted with a probability (see equation (3.1.17))
acc(o — n) =min (1,exp{—RU(n) —U(0)]}). (5.2.3)
If rejected, the old configuration is kept.

An implementation of this basic Metropolis scheme is shown in Section 3.2
(Algorithms 1 and 2).

5.2.2 Justification of the Algorithm

The probability of generating a particular configuration is constant and in-
dependent of the conformation of the system

oo = n)=an—o) =«

Substitution of this equation in the condition of detailed balance (5.1.1) and
substitution of the desired distribution (5.2.2) gives as condition for the ac-
ceptance rules
acc(o - n)
acc(n — o)

It is straightforward to demonstrate that acceptance rule (5.2.3) obeys this
condition.

=exp{—pU/(n) —U(o]]}. (5.2.4)

5.3 Microcanonical Monte Carlo

Most experimental observations are performed at constant N,P,T; sometimes
at constant u, V, T; and occasionally at constant N,V,T. Experiments at con-
stant N, V, E are very rare, to say the least. Under what circumstances, then,
would anyone wish to perform Monte Carlo simulations at constant N, V,
and E? We suppose that, if you are interested in the simulation of dense lig-
uids or solids, the answer would be “hardly ever™. Still there are situations
where a microcanonical Monte Carlo method, first suggested by Creutz [84],
may be of use. In particular, you might be worried that a poor random-
number generator may introduce a bias in the sampling of the Boltzmann
distribution or in the unlikely case that the exponentiation of the Boltzmann
factor exp{—p[U(n) — U(o)]} may account for a nonnegligible fraction of the
computing time.

The microcanonical Monte Carlo method uses no random numbers to
determine the acceptance of a move. Rather, it uses the following procedure.
We start with the system in a configuration g™. Denote the potential energy
for this state by U(g™N). We now fix the total energy of the system at a value
E > U. To this end, we introduce an additional degree of freedom that carries
the remainder of the energy of the system: Ep = E — U. Ep must always be
nonnegative. Now we start our Monte Carlo run.
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1. After each trial move we compute the change in potential energy of
the system,

AU =U(q™) —u(gN).

2. If AU < 0, we accept the move and increase the energy carried by the
demon by [AU]. If AU > 0, we test if the demon carries enough energy
to make up the difference. Otherwise, we reject the trial move.

Note that no random numbers were used in this decision. Using elementary
statistical mechanics it is easy to see that, after equilibration, the probability
density to find the demon with an energy Ep is given by the Boltzmann
distribution:

N(Ep) = (kgT) 'exp(—Ep/kgT).

Hence, the demon acts as a thermometer. Note that this method does not re-
ally simulate the microcanonical ensemble. What is kept (almost) constant is
the total potential energy. We can, however, mimic the real N, V, E ensemble
by introducing a demon for every quadratic term in the Kinetic energy. We
then apply the same rules as before, randomly selecting a demon to pay or
accept the potential energy change for every trial move.

Microcanonical Monte Carlo is rarely, if ever, used to simulate molecular
systems.

5.4 Isobaric-lsothermal Ensemble

The isobaric-isothermal (constant-NPT) ensemble is widely used in Monte
Carlo simulations. This is not surprising because most real experiments are
also carried out under conditions of controlled pressure and temperature.
Moreover, constant-NPT simulations can be used to measure the equation of
state of a model system even if the virial expression for the pressure cannot
be readily evaluated. This may be the case, for instance, for certain models
of nonspherical hard-core molecules, but also for the increasingly important
class of models where the (nonpairwise additive) potential energy function
is computed numerically for each new configuration. Finally, it is often con-
venient to use constant-NPT Monte Carlo to simulate systems in the vicinity
of a first-order phase transition, because at constant pressure the system is
free (given enough time, of course) to transform completely into the state of
lowest (Gibbs) free energy, whereas in a constant-NVT simulation the sys-
tem may be kept at a density where it would like to phase separate into two
bulk phases of different density but is prevented from doing so by finite-size
effects.

Monte Carlo simulations at constant pressure were first described by
Wood [79] in the context of a simulation study of two-dimensional hard
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disks. Although the method introduced by Wood is very elegant, it is not
readily applicable to systems with arbitrary continuous potentials. McDon-
ald [80] was the first to apply constant-NPT simulations to a system with con-
tinuous intermolecular forces (a Lennard-Jones mixture), and the constant-
pressure method of McDonald is now being used almost universally and
that is discussed next.

5.4.1 Statistical Mechanical Basis

We will derive the basic equations of constant-pressure Monte Carlo in a
way that may appear unnecessarily complicated. However, this derivation
has the advantage that the same framework can be used to introduce some of
the other non-NVT Monte Carlo methods to be discussed later. For the sake
of convenience we shall initially assume that we are dealing with a system
of N identical atoms. The partition function for this system is given by

1 - - N N
Q(N,V,T) = WL Jo dr™ exp[—puU(r™)]. (5.4.1)
It is convenient to rewrite equation (5.4.1) in a slightly different way. We
have assumed that the system is contained in a cubic box with diameter
L = V173, We now define scaled coordinates s™ by

ry =Ls; for 1i=1,2,---,N. (5.4.2)
If we now insert these scaled coordinates in equation (5.4.1), we obtain
VN 1 1 N N
QN,V,T) = NN L ~-~L ds™ exp[—pU(s™;L)]. (5.4.3)

In equation (5.4.3), we have written 2/(s™; L) to indicate that 2/ depends on
the real rather than the scaled distances between the particles. The expres-
sion for the Helmholtz free energy of the system is

FIN,V,T) = —kgTInQ
VN N N
= —kgTIn <W>—kBTIans expl—pU(s™; L)]
= FIN,V,T)+FXN,V,T). (5.4.4)

In the last line of this equation we have identified the two contributions to
the Helmholtz free energy on the previous line as the ideal gas expression
plus an excess part. Let us now assume that the system is separated by a
piston® from an ideal gas reservoir (see Figure 5.2). The total volume of the

L Actually, there is no need to assume a real piston. The systems with volume V and Vo — V
may both be isolated systems subject to their individual (periodic) boundary conditions. The
only constraint that we impose is that the sum of the volumes of the two systems equals V.
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Figure 5.2: Ideal gas (m particles, volume V,— V) can exchange volume with
an N-particle system (volume V).

system plus reservoir is fixed at a value V. The total number of particles
is M. Hence, the volume accessible to the M — N ideal gas molecules is
Vo — V. The partition function of the total system is simply the product of
the partition functions of the constituent subsystems:

B VN(vQ_v)MfN
~ ASMNI(M — N)!

Q(N,M,V,V,, T) stM*N stN exp[—pU(s™;L)].

(5.4.5)
Note that the integral over the sM~—™ scaled coordinates of the ideal gas
yields simply 1. For the sake of compactness, we have assumed that the ther-
mal wavelength of the ideal gas molecules is also equal to A. The total free
energy of this combined system is F° = —kgTInQ(N,M,V,V,, T). Now
let us assume that the piston between the two subsystems is free to move,
so that the volume V of the N-particle subsystem can fluctuate. Of course,
the most probable value of V will be the one that minimizes the free energy
of the combined system. The probability density A/(V) that the N-particle
subsystem has a volume V is given by

_ VNV — V)M=N [ dsN exp[—BU/(sN; L)]
32 dVIVIN(V, — VI)M=N [ dsN exp[—pL/(sN;L')]
We now consider the limit that the size of the reservoir tends to infinity
(Vo = 00, M = o0, (M — N)/Vy — p). In that limit, a small volume change
of the small system does not change the pressure P of the large system. In
other words, the large system works as a manostat for the small system. In

that case, we can simplify equations (5.4.5) and (5.4.6). Note that in the limit
V/Vy — 0, we can write

(Vo — V)M N = VNI — (v Vo IM N — v Nexp(—mV/ Vo).

N(V) (5.4.6)
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Note that for M — N — oo, exp(—(M — N)V/V,y) — exp(—pV). But, as the
reservoir contains an ideal gas, p can be written as P. With these substitu-
tions, the combined partition function (5.4.5) can be written as

Q(N,P,T)= % JdVVN exp(—pPV) stN exp—pU(sN;L)], (5.4.7)

where we have included a factor P to make Q(N, P, T) dimensionless. This
gives, for equation (5.4.6);

_ VNexp(—BPV) [dsN exp[—Bu/(s™;L)]
[y dVI VN exp(—pPV') [ dsN expl—pi(sN;L')]

Nnp,1(V) (5.4.8)

In the same limit, the difference in free energy between the combined system
and the ideal gas system in the absence of the N-particle subsystem is the
well-known Gibbs free energy G:

G(N,P,T)=—kgTInQ(N,P,T). (5.4.9)

Equation (5.4.8) is the starting point for constant-NPT Monte Carlo sim-
ulations. The idea is that the probability density to find the small system
in a particular configuration of the N atoms (as specified by sN) at a given
volume V is given by:

N(V;sN) o« VNexp(—BPV)exp[—pU(sN;L)]
= exp{-BUEN,V)+PV-NB 'InV]. (5.4.10)

We can now carry out Metropolis sampling on the reduced coordinates s™
and the volume V.

In the constant-NPT Monte Carlo method, V is simply treated as an ad-
ditional coordinate, and trial moves in V must satisfy the same rules as trial
moves in s (in particular, we should maintain the symmetry of the under-
lying Markov chain). Let us assume that our trial moves consist of an at-
tempted change of the volume from Vto V' = V+AV,where AV isarandom
number uniformly distributed between over the interval [—AVmax, +AVmaxl.
In the Metropolis scheme such a random, volume changing move will be
accepted with the probability

acclo »n) = min(1,exp{—pU(sN, V') —uU(sN,V)
+P(V = V)=NB In(V//V)]}). (5.4.11)
Instead of attempting random changes in the volume itself, one might con-
struct trial moves in the box length L [80] or in the logarithm of the vol-

ume [86]. Such trial moves are equally legitimate, as long as the symmetry
of the underlying Markov chain is maintained. However, such alternative
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schemes result in a slightly different form for equation (5.4.11). The partition
function (5.4.7) can be rewritten as

__PBP

Jd(InV)VN“ exp(—BPV) stN exp[—BU(sN;L)].

(5.4.12)
This equation shows that, if we perform a random walk in InV, the proba-
bility of finding volume V is given by

N(V;sN) oc VN exp(—BPV) expl—pU (sN; L)]. (5.4.13)
This distribution can be sampled with the following acceptance rule:

acclo = n) = min (1,exp{—BU(sN, V) —u(sN,V)
+P(V' = V)= (N+ 1) In(V'/V)]}). (5.4.14)

5.4.2 Monte Carlo Simulations

The frequency with which trial moves in the volume should be attempted
is dependent on the efficiency with which volume space is sampled. If, as
before, we use as our criterion of efficiency

sum of squares of accepted volume changes

teru ’
then it is obvious that the frequency with which we attempt moves depends
on their cost. In general, a volume trial move will require that we recom-
pute all intermolecular interactions. It therefore is comparable in cost to
carrying out N trial moves on the molecular positions. In such cases it is
common practice to perform one volume trial move for every cycle of posi-
tional trial moves. Note that, to guarantee the symmetry of the underlying
Markov chain, volume moves should not be attempted periodically after
a fixed number (say N) positional trial moves. Rather, at every step there
should be a probability 1/N to attempt a volume move instead of a particle
move. The criteria determining the optimal acceptance of volume moves are
no different than those for particle moves.
In one class of potential energy functions, volume trial moves are very
cheap; namely, those for which the total interaction energy can be written as
a sum of powers of the interatomic distances:

u, = Z e(o/ry;)"
i<

> elo/(Lsy)l™, (5.4.15)

i<j
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or, possibly, a linear combination of such sums (the famous Lennard-Jones
potential is an example of the latter category). Note that U,, in equation
(5.4.15) changes in a trivial way if the volume is modified such that the linear
dimensions of the system change for L to L":

L n
U, (L") = <?> U, (L). (5.4.16)
Clearly, in this case, computing the probability of acceptance of a volume-
changing trial move is extremely cheap. Hence such trial moves may be
attempted with high frequency, for example, as frequent as particle moves.
One should be very careful when using the scaling property (5.4.16) if at
the same time one uses a cutoff (say r.) on the range of the potential. Use
of equation (5.4.16) implicitly assumes that the cutoff radius r. scales with
L, such that v, = r.(L'/L). The corresponding tail correction to the poten-
tial (and the virial) should also be recomputed to take into account both the
different cutoff radius and the different density of the system.

Algorithms 2, 10 and 11 show the basic structure of a simulation in the
NPT-ensemble.

Finally, it is always useful to compute the virial pressure during a con-
stant pressure simulation. On average, the virial pressure should always be
equal to the applied pressure. This is easy to prove as follows. First of all,
note that the virial pressure P, (V) of an N-particle system at volume V is
equal to

oF
P,(V)= (av) . (5.4.17)
In an isothermal-isobaric ensemble, the probability-density P (V) of finding
the system with volume V is equal to (exp[—p (F(V )+ PV)])/Q(NPT), where

Q(NPT) = BPJdV exp[—B(F(V)+PV)I.

Let us now compute the average value of the virial pressure:

_ BP [ B
(Pu) = guner) | 9V (OFV)/OVIexpl=(F(V] +PV]]

N Q(][il];T) ] dVp ' (dexp[—BF(V)]/dV)exp(—BPV)

_ pP

= QNPT dVPexp[—B(F(V)+PV)]
- (5.4.18)

The third line in this equation follows from partial integration.
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Algorithm 10 (Basic NPT-Ensemble Simulation)

PROGRAM mmpt basic NPT-ensemble simulation

do icycl=1,ncycl perform ncycl MC cycles
ran=ranf()*(npart+1)+1
if (ran.le.npart) then
call mcmove perform particle displacement
else
call mcvol perform volume change
endif
if (mod(icycl,nsamp).eq.0)
+ call sample sample averages
enddo
end

Comments to this algorithm:

1. Thisalgorithm ensures that, after each MC step, detailed balance is obeyed and
that per cycle we perform (on average) npart attempts to displace particles
and one attempt to change the volume.

2. Subroutine mcmove attempts to displace a randomly selected particle (Al-
gorithm 2), and subroutine mcvol attempts to change the volume (Al-
gorithm 11), and subroutine sample updates ensemble averages every
nsampth cycle.

Thus far we have limited our discussion of Monte Carlo at constant pres-
sure to pure, atomic systems. Extension of the technique to mixtures is
straightforward. The method is also easily applicable to molecular systems.
However, in the latter case, it is crucial to note that only the center-of-mass
positions of the molecules should be scaled in a volume move, never the
relative positions of the constituent atoms in the molecule. This has one
practical consequence; namely, that the simple scaling relation (5.4.16) can
never be used in molecular systems with site-site interactions. The reason
is that, even if the center-of-mass separations between molecules scale as a
simple power of the system size, the site-site separations do not.

5.4.3 Applications

Case Study 7 (Equation of State of the Lennard-Jones Fluid)
Simulations at constant pressure can be used also to determine the equa-
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Algorithm 11 (Attempt to Change the Volume)

SUBROUTINE mcvol attempts to change
the volume

call toterg(box,eno) total energy old conf.
vo=box**3 determine old volume
Invn=log(vo)+(ranf()-0.5)*vmax perform random walk in In V
vn=exp(Invn)
boxn=vn**(1/3) new box length
do i=1,npart

x(i)=x(i)*boxn/box rescale center of mass
enddo
call toterg(boxn,enn) total energy new conf.
arg=-beta*((enn-eno)+p*(vn-vo)

+ -(npart+1)*log(vn/vo)/beta) appropriate weight function!

if (ranf().gt.exp(arg)) then acceptance rule (5.2.3)

do i=1,npart REJECTED

X(i)=x(i)*box/boxn restore the old positions

enddo
endif
return
end

Comments to this algorithm:

1. A random walk in In'V is performed using acceptance rule (5.4.14).

2. The subroutine toterg  calculates the total energy. Usually the energy of the
old configuration is known, therefore this subroutine is called only once.

tion of state of a pure component. In such as simulation the density is de-
termined as a function of the applied pressure and temperature. Figure 5.3
shows that, for the Lennard-Jones fluid, the results of an N,P,T simulation
compare very well with those obtained in Case Study 1. In simulations of
models of real molecules one would like to know whether at atmospheric
conditions the model fluid has the same density as the real fluid. One would
need to perform several N,V,T simulations to determine the density at which
the pressure is approximately 1 atm. In an N,P,T simulation one would ob-
tain this result in a single simulation. Furthermore, 1 atm. is a relatively low
pressure, and one would need long simulations to determine the pressure
from an N,V,T simulation, whereas the density in general is determined ac-
curately from an N,P,T simulation.
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Figure 5.3: Equation of state of the Lennard-Jones fluid as obtained from
N,P,T simulations; isotherms at T = 2.0. The solid line is the equation of
state of Johnson et al. [55] and the squares are the results from the simulations
(N =108).

Case Study 8 (Phase Equilibria from Constant Pressure Simulations)

In Case Studies 1 and 7 N,V,T or N,P,T simulations are used to determine
the equation of state of a pure component. If these equation of state data are
fitted to an analytical equation of state (for example, the van der Waals equa-
tion of state or more sophisticated forms of this equation), the vapor-liquid
coexistence curve can be determined from Maxwell's equal area construc-
tion. Although this way of determining a coexistence curve is guaranteed to
work for all systems, it requires many simulations and, therefore, is a rather
cumbersome route. Alternative routes have been developed to determine
vapor-liquid coexistence from a single simulation. In this case study we in-
vestigate one of them: zero pressure simulation.

A zero pressure simulation provides a quick (and dirty) way to obtain an
estimate of the liquid coexistence density. If we perform a simulation at zero
pressure and start with a density greater than the liquid density, the average
density obtained from a simulation that is not too long will be close to the
coexistence density. Such a simulation should not be too long because the
probability exists that the system will undergo a large fluctuation in density.
If this fluctuation is towards a lower density the system size can become in-
finitely large, since the equilibrium density that corresponds to zero pressure
is exactly zero. Figure 5.4 shows the results for the Lennard-Jones fluid.
Not too close to the critical temperature, a reasonable estimate of the lig-
uid density can be obtained via a single simulation. Important to note is that
this estimate deviates systematically from the true coexistence densities and
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Figure 5.4: Vapor-liquid coexistence of the Lennard-Jones fluid; for each
temperature the solid lines give at a given temperature the coexisting gas
density (left curve) and the coexisting liquid density (right curve). The cir-
cles are the average densities obtained from N,P, T simulations at zero pres-
sure. Important to note is that for T = 1.2 the zero pressure method fails to
predict coexistence.

this technique should not be used to determine the coexistence curve. This
technique is very useful to obtain a first estimate of the coexistence curve.

In contrast to the zero pressure simulations, the histogram technique
does lead to a correct estimate of the coexistence density. This technique is
often used in lattice models because it allows for a systematic investigation
of the finite-size effects (see, for example, [87-90]).

5.5 Isotension-Isothermal Ensemble

The NPT-MC method is perfectly adequate for homogeneous fluids. How-
ever, for inhomogeneous systems, in particular crystalline solids, it may not
be sufficient that the simulation box can change size. Often we are interested
in the transformation of a crystal from one structure to another or even in
the change of the shape of the crystalline unit cell with temperature or with
applied stress. In such cases it is essential that the shape of the simulation
box has enough freedom to allow for such changes in crystal structure with-
out creating grain boundaries or other highly stressed configurations. This
problem was first tackled by Parrinello and Rahman [91,92], who developed
an extension of the constant-pressure Molecular Dynamics technique intro-
duced by Andersen [93]. The extension of the Parrinello-Rahman method to
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Monte Carlo simulations is straightforward (actually, the method is quite a
bit simpler in Monte Carlo than in Molecular Dynamics).

To our knowledge, the first published account of constant-stress Monte
Carlo is a paper by Najafabadi and Yip [81]. At the core of the constant-
stress Monte Carlo method lies the transformation from the scaled coordi-
nates s to the real coordinates g. If the simulation box is not cubic and not
orthorhombic, the transformation between s and r is given by a matrix h:
T« = hapsg. The volume of the simulation box V is equal to |det h|. Without
loss of generality we can choose h to be a symmetric matrix. In the constant-
stress Monte Carlo procedure certain moves consist of an attempted change
of one or more of the elements of h. Actually, it would be equally realistic
(but not completely equivalent) to sample the elements of the metric tensor
G = hh, where h is the transpose of h. If only hydrostatic external pressure
is applied, the constant-stress Monte Carlo method is almost equivalent to
constant-pressure Monte Carlo.? Under nonhydrostatic pressure (e.g., uni-
axial stress), there is again some freedom of choice in deciding how to apply
such deforming stresses. Probably the most elegant method (and the method
that reflects most closely the statistical thermodynamics of deformed solids)
is to express all external deforming stresses in terms of the so-called thermo-
dynamic tension (see, e.g., [94]).

5.6 Grand-Canonical Ensemble

The ensembles we have discussed so far have the total number of particles
imposed. For some systems, however, one would like to obtain information
on the average number of particles in a system as a function of the exter-
nal conditions. For example, in adsorption studies one would like to know
the amount of material adsorbed as a function of the pressure and temper-
ature of the reservoir with which the material is in contact. A naive but
theoretically valid approach would be to use the Molecular Dynamics tech-
nigue (microcanonical ensemble) and simulate the experimental situation;
an adsorbent in contact with a gas (see Figure 5.5). Such a simulation is pos-
sible for only very simple systems. In real experiments, equilibration may
take minutes or even several hours depending on the type of gas molecules.
These equilibration times would be reflected in a Molecular Dynamics sim-
ulation, the difference being that a minute of experimental time takes of the
order of 10 seconds on a computer. Furthermore, in most cases, we are
not interested in the properties of the gas phase, yet a significant amount of

2Except that one should never use the constant-stress method for uniform fluids, because
the latter offer no resistance to the deformation of the unit box and very strange (flat, elongated,
etc.) box shapes may result. This may have serious consequences because simulations on sys-
tems that have shrunk considerably in any one dimension tend to exhibit appreciable finite-size
effects.
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Figure 5.5: Adsorbent (for example a zeolite) in direct contact with a gas

CPU time will be spent on the simulation of this phase, and finally, in such
a simulation, there is an interface between the gas phase and the zeolite. In
the interfacial region the properties of the system are different from the bulk
properties in which we are interested. Since in a simulation the system is
relatively small, we have to simulate a very large system to minimize the
influence of this interfacial region

Most of these problems can be solved by a careful choice of ensembles.
For adsorption studies, a natural ensemble to use is the grand-canonical en-
semble (or w,V, T ensemble). In this ensemble, the temperature, volume, and
chemical potential are fixed. In the experimental setup, the adsorbed gas is
in equilibrium with the gas in the reservoir. The equilibrium conditions are
that the temperature and chemical potential of the gas inside and outside
the adsorbent must be equal.* The gas that is in contact with the adsorbent
can be considered as a reservoir that imposes a temperature and chemical
potential on the adsorbed gas (see Figure 5.6). We therefore have to know
only the temperature and chemical potential of this reservoir to determine
the equilibrium concentration inside the adsorbent. This is exactly what is
mimicked in the grand-canonical ensemble: the temperature and chemical
potential are imposed and the number of particles is allowed to fluctuate
during the simulation. This makes these simulations different from the con-
ventional ensembles, where the number of molecules is fixed.

3Such a simulation, of course, would be appropriate if the interest is in just this region.

4Note that the pressure is not defined inside the zeolite; therefore, the pressure cannot be an
equilibrium quantity. However, the pressure is related to the chemical potential via an equation
of state, and it is always possible to calculate the pressure of the gas that corresponds to a given
chemical potential and vice versa.
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Figure 5.6: Adsorbent in contact with a reservoir that imposes constant
chemical potential and temperature by exchanging particles and energy

5.6.1 Statistical Mechanical Basis

In section 3.1.2, we introduced the Metropolis sampling scheme as a method
to compute thermal averages of functions A(r™) that depend explicitly on
the coordinates of the molecules in the N-body system under study. Ex-
amples of such mechanical properties are the potential energy or the virial
contribution to the pressure. However, the Metropolis method could not be
used to determine the integral [ dr™ exp[—pu/(r™)] itself. The latter quan-
tity measures the effective volume in configuration space that is accessible
to the system. Hence, the original Metropolis scheme could not be used to
determine those thermodynamic properties of a system that depend explic-
itly on the configurational integral. Examples of such thermal properties
are the Helmholtz free energy F, the entropy S, and the Gibbs free energy
G. However, although the Metropolis method cannot be used to measure,
for instance, free energies directly, it can be used to measure the difference
in free energy between two possible states of an N-body system. This fact
is exploited in the grand-canonical Monte Carlo method first implemented
for classical fluids by Norman and Filinov [82], and later extended and im-
proved by a number of other groups [83,95-102]. The basic idea of the grand-
canonical Monte Carlo method is explained next.

To understand the statistical mechanical basis for the grand-canonical
Monte Carlo technique, let us return to equation (5.4.5) of section 5.4. This
equation gives the partition function of a combined system of N interacting
particles in volume V and M — N ideal gas molecules in volume V, — V:

VNV —Vv)MN
~ ASMNI(M —N)!

QIN,M,V, Vo, T) stM*N stN expl—pU(sN)].

Now, instead of allowing the two systems to exchange volume, let us see
what happens if the systems can also exchange particles (see Figure 5.7). To
be more precise, we assume that the molecules in the two subvolumes are
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Figure 5.7: Ideal gas (M —N particles, volume V,—V) can exchange particles
with a N-particle system (volume V).

actually identical particles. The only difference is that when they find them-
selves in volume V, they interact and, when they are in volume V, — V, they
do not. If we transfer a molecule i from a reduced coordinate s; in the vol-
ume V, — V to the same reduced coordinate in volume V, then the potential
energy function ¢/ changes from /(sN) to ¢(sN*'). The expression for the
total partition function of the system, including all possible distributions of
the M particles over the two subvolumes is

& VN(Vo— VM N
Q(M,V, Vo, T) = stM*N stN expl—puU(sN).
L= ASMNI(M —N)!

(5.6.1)
Following the approach of section 5.4, we now write the probability den-
sity to find a system with M — N particles at reduced coordinates sM—N in
volume V' = V,—V and N particles at reduced coordinates sN in volume V:

VNlefN

NEYN) = SV v T AN W)

, exp[—pu(s™)]. (5.6.2)

Let us now consider a trial move in which a particle is transferred from V'
to the same scaled coordinate in V. First we should make sure that we con-
struct an underlying Markov that is symmetric. Symmetry, in this case, im-
plies that the a priori probability to move a particle from V' to V should be
equal to the a priori probability of the reverse move. The probability of ac-
ceptance of a trial move in which we move a particle to or from volume V is
determined by the ratio of the corresponding probability densities (5.6.2):
V(M —N)

a(NSN+1) = mexp(—ﬁ[ws““)—u(s]\‘)}) (5.6.3)
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V(N +T) N N1
Now let us consider the limit that the ideal gas system is very much larger
than the interacting system: M — oo,V — oo, (M/V') — p. Note that for

an ideal gas the chemical potential n is related to the particle density p by

iw=kgTInA3p.
Therefore, in the limit (M /N) — oo, the partition function (5.6.1) becomes
— ex N)VN
QUi V. T) = ZO% [as¥expiprisn,  669)
N=
and the corresponding probability density

exp(BuN)VN

A3SNN!
Equations (5.6.5) and (5.6.6) are the basic equations for Monte Carlo simu-
lations in the grand-canonical ensemble. Note that, in these equations, all
explicit reference to the ideal gas system has disappeared.

Nouvr(s™;N) o« exp[—pU(sN)]. (5.6.6)

5.6.2 Monte Carlo Simulations

In a grand-canonical simulation, we have to sample the distribution (5.6.6).
Acceptable trial moves are

1. Displacement of particles. A particle is selected at random and given
a new conformation (for example in the case of atoms a random dis-
placement). This move is accepted with a probability

acc(s — s’) = min (1,exp{—(5[M(s’N) —u(s™ )]}) : (5.6.7)

2. Insertion and removal of particles. A particle is inserted at a random po-
sition or a randomly selected particle is removed. The creation of a
particle is accepted with a probability

exp{Blu —U(N+1) +U(N)]}

(5.6.8)

and the removal of a particle is accepted with a probability
. A3N
acc(N — N —1) =min I,Texp{fﬁ[uqtu(N —1)—=U(N)} .
(5.6.9)

Appendix F demonstrates how the chemical potential of the reservoir can
be related to the pressure of the reservoir. Algorithm 12 shows the basic
structure of a simulation in the grand-canonical ensemble.
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Algorithm 12 (Basic Grand-Canonical Ensemble Simulation)

PROGRAM ngc basic uVT-ensemble
simulation
do icycl=1,ncycl perform ncycl MC cycles

ran=int(ranf()*(npart+nexc))+1
if (ran.le.npart) then

call mcmove displace a particle
else
call mcexc exchange a particle
endif with the reservoir
if (mod(icycl,nsamp).eq.0)
+ call sample sample averages
enddo
end

Comments to this algorithm:

1. This algorithm ensures that, after each MC step, detailed balance is obeyed.
Per cycle we perform on average npart attempts to displace particles and
nexc attempts to exchange particles with the reservoir.

2. Subroutine mcmoveattempts to displace a particle (Algorithm 2), subroutine
mcexc attempts to exchange a particle with a reservoir (Algorithm 13), and
subroutine sample samples quantities every nsamp cycle.

5.6.3 Justification of the Algorithm

Itis instructive to demonstrate that the acceptance rules (5.6.7)—(5.6.9) indeed
lead to a sampling of distribution (5.6.6). Consider a move in which we
start with a configuration with N particles and move to a configuration with
N + 1 particles by inserting a particle in the system. Recall than we have to
demonstrate that detailed balance is obeyed:

KIN=N+1)=K(N+1—- N),
with
KIN=N+1)=N(N)x a(N—=N+1)xacc(N— N+1).

In Algorithm 12 at each Monte Carlo step the probability that an attempt is
made to remove a particle is equal to the probability of attempting to add
one:

ogen(N = N+ 1) = agen(N +1 = N),
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Algorithm 13 (Attempt to Exchange a Particle with a Reservoir)
SUBROUTINE mcexc attempt to exchange a particle
with a reservoir
if (ranf().It.0.5) then decide to remove or add a particle
if (npart.eq.0) return test whether there is a particle
o=int(npart*ranf())+1 select a particle to be removed
call ener(x(0),eno) energy particle o
arg=npart*exp(beta*eno) acceptance rule (5.6.9)
+ [(zz*vol)
if (ranf().lt.arg) then
x(0)=x(npart) accepted: remove particle o
npart=npart-1
endif
else
xn=ranf()*box new particle at a random position
call ener(xn,enn) energy new particle
arg=zz*vol*exp(-beta*enn) acceptance rule (5.6.8)
+ /(npart+1)
if (ranf().lt.arg) then
x(npart+1)=xn accepted: add new particle
npart=npart+1
endif
endif
return
end

Comment to this algorithm:

1. We have defined: zz = exp(pu)/A. The subroutine ener calculates the

energy of a particle at a given position.

where the subscript gen refers to the fact that « measures the probability to
generate this trial move. Substitution of this equation together with equa-

tion (5.6.6) into the condition of detailed balance gives:

acc(N = N+1)  exp[Bu(N+ 1)VNTTexp[—pu/(sN )]
acc(N+1—= N) AN (N + 1)1
ASNN!exp[pU/(sN)]
exp(BuN)VN
exp(Bu)V

_ - N+T1y N
— 7/\3(N+”exp{ BN —u(s™M)).
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It is straightforward to show that acceptance rules (5.6.8) and (5.6.9) obey
this condition.

The most salient feature of the grand-canonical Monte Carlo technique is
that in such simulations the chemical potential u is imposed, while the num-
ber of particles N is a fluctuating quantity. During the simulation we may
measure other thermodynamic quantities, such as the pressure P, the aver-
age density (p), or the internal energy (/). As we know ., we can derive all
other thermal properties, such as the Helmholtz free energy or the entropy.
This may seem surprising. After all, in section 3.1 we stated that Metropolis
sampling cannot be used to sample absolute free energies and related quan-
tities. Yet, with grand-canonical Monte Carlo we seem to be doing precisely
that. The answer is that, in fact, we do not. What we measure is not an
absolute but a relative free energy. In grand-canonical Monte Carlo, we are
equating the chemical potential of a molecule in an ideal gas at density p (for
the ideal gas case we know how to compute 1) and the chemical potential of
the same species in an interacting system at density p’.

Grand-canonical Monte Carlo works best if the acceptance of trial moves
by which particles are added or removed is not too low. For atomic fluids,
this condition effectively limits the maximum density at which the method
can be used to about twice the critical density. Special tricks are needed to
extend the grand-canonical Monte Carlo method to somewhat higher densi-
ties [100]. Grand-canonical Monte Carlo is easily implemented for mixtures
and inhomogeneous systems, such as fluids near interfaces. In fact, some
of the most useful applications of the grand-canonical Monte Carlo method
are precisely in these areas of research. Although the grand canonical Monte
Carlo technique can be applied to simple models of nonspherical molecules,
special techniques are required since the method converges very poorly for
all but the smallest polyatomic molecules. In section 13.5 some of these tech-
niques are discussed.

5.6.4 Applications

Case Study 9 (Equation of State of the Lennard-Jones Fluid)

In Case Studies 1 and 7, we used N,V,T simulations and N,P, T simulations
to determine the equation of state of the Lennard-Jones fluid. A third way to
determine the equation of state is to impose the temperature and chemical
potential and calculate the density and pressure. An example of such a
calculation is shown in Figure 5.8. This is not a very convenient method since
both the pressure and density are fluctuating quantities, hence we will have
an error in both quantities, while in the N,P,T ensemble either the pressure or
density is imposed and therefore known without a statistical error. Of course,
a grand-canonical simulation is useful if we want to have information on the
chemical potential of our system.
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Figure 5.8: Equation of state of the Lennard-Jones fluid; isotherm at T = 2.0.
The solid line is the equation of state of Johnson et al. [55] and the squares
are the results from grand-canonical simulations (with volume V = 250.047).
The dotted line is the excess chemical potential as calculated from the equa-
tion of state of Johnson et al. and the circles are the results of the simulations.

Example 2 (Adsorption Isotherms of Zeolites)

Zeolites are crystalline inorganic polymers which form a three-dimensional
network of micropores (see Figure 5.9). These pores are accessible to var-
ious guest molecules. The large internal surface, the thermal stability, and
the presence of thousands of acid sites make zeolites an important class
of catalytic materials for petrochemical applications. For a rational use of
zeolites, it is essential to have a detailed knowledge of the behavior of the
adsorbed molecules inside the pores of the zeolites. Since this type of infor-
mation is very difficult to obtain experimentally, simulations are an attractive
alternative. One of the first attempts to study the thermodynamic properties
of a molecule adsorbed in a zeolite was made by Stroud et al. [103]. Reviews
of the various applications of computer simulations of zeolites can be found
in [104].

For small absorbents such as methane or the noble gases, grand-ca-
nonical Monte Carlo simulations can be applied to calculate the adsorption
isotherms in the various zeolites [105-111]. An example of an adsorption
isotherm of methane in the zeolite silicalite is shown in Figure 5.10. These
calculations are based on the model of Goodbody et al. [107]. The agree-
ment with the experimental data is very good, which shows that for these
well characterized systems simulations can give data that are comparable
with experiments.

For long-chain alkanes (butane and longer) it is very difficult to perform a
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Figtgre 5.9: Example of a zeolite structure (Theta-1), the pore size is ca. 4.4 x
5.5 A. The Si atoms have four bonds and the O atoms two.
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Figure 5.10: Adsorption isotherms of methane in silicalite, showing the
amount of methane adsorbed as a function of the external pressure. The
black symbols are experimental data (see [112] for details). The open squares
are the results of grand-canonical simulations using the model of [107].
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successful insertion, in almost all attempts one of the atoms of the molecule
will overlap with one of the atoms of the zeolite. As a consequence the
number of attempts has to be astronomically large to have a reasonable
number of successful exchanges with the reservoir. In Chapter 13 we show
how this can problem be solved.



