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Diffusion in a Force Field

The value of Avogadro’s number was first measured directly in
1909 by Perrin.® For these experiments, Perrin was awarded the
Nobel prize in physics in 1921. The interpretation of these
experiments is based on the theory of sedimentation equilibrium,
Using monodisperse colloidal particles of known size dispersed in
a liquid, Perrin measured the equilibrium concentration profile
in a gravitational force field.

Knowning the particle size, Perrin could deduce Avogadro’s
number. Today we accurately know the value of Avogadro’s number
and we can use the results of a similar experiment to deduce the
size of colloidal particles in an unknown.

Sedimentation Equilibrium (gases)

Suppose I have a column of gas
which 1s wvery tall. Like the
atmosphere on our planet, the
gravitational force acting on the
gas molecules causes the pressure
cf the gas to be higher at the
bottom of the column than at the
top. < g b

Selecting a thin slice of gas, thickness Az, and performing a
force balance on it yields:

p{z)A - p(z+tAz)A = c(z)AAzME‘g

where Fq = g = grav. force on unit mass of gas

P = gas pressure

A = area of column

¢ = gas concentration (moles/vol)

M = molecular weight of gas (g/mole)

g = acceleration of gravity
Dividing by AAz and taking the limit as Az— 0 yields

dp/dz = —MFgc (1)

For an ideal gas p = cRT (2)
(2) into (1): dp/dz = -MF p/RT o (3)

If we now assume that the gas is uniform in temperature:

*Jean Baptiste Perrin (1870-1942): Fr. physicist.
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T 2 T{(z)

and 1ignore changes in the gravitational acceleration with
elevation, then (3) can be easily integrated: :

p(z) Poexp (-MFgz /RT)

or c(z) = cgexp (-MF z/RT) : (4)

where the subscript 0 denotes the value at z=0. It turns out
that (4) does not accurately predict the pressure profile in the
earth’s atmosphere because there are significant temperature
variations with elevation due to radiation, wind currents, etc,
In a laboratory experiment, we can avoid these effects and
thereby achieve thermal equilibrium in which the temperature of
the system is uniform.

Generalized to Nonuniform Force Fields
Suppose the gravitational field was not constant:

g = g(z)

The solution for the concentration profile due to sedimentation
equilibrium turns out to be:

z
where o (z) = f F (z')dz’
g( ) 0 g( )
is the gravitational potential energy per unit mass. This

represents the work required to raise a unit mass from z=0 to
zZ=Z. )

If g=const
then ¢§ = ng
and (5) reduces to (4).

Actually (5) applies to any force field. There is nothing in
its derivation which restricts this derivation to gravitaticnal

forces. (5) also applies to electrostatic or magnetic forces,
provided we use the proper expression for the potential energy
associated with the force. These forces might have different

directions at different positions as well as different magnitude.
Thus, more generally, if the gas molecules feel a net force

F(x) = net force/mass (vector)
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x = position vector (X,y,2)

then the concentration of gas molecules at equilibrium will be
given by:

c(x) = cyexpl[-M®(x)/RT], - (6)
where ®(x) = -J E-dx = potential energy/mass

is the net potential energy/mass associated with the net force.
jc denotes a contour integral: the contour goes from the
reference state to the point x. For conservative force fields
like gravity and electrostatic forces, this contour integral is
independent of the path: it depends only on the initial and final
points —-- not on the shape of the path connecting them.

This expression for the potential can be differentiated to give:

F = -Vo

Generalized to Any Ideal Mixture e s

Although we have derived Boltzmann’s equation for an ideal
gas, it turns out it also applies for any ideal sclution. Recall
from thermodynamics that the criteria for phase equilibrium is
the equality of chemical potential among all phases:

p; in Phase 1 = p; in Phase 2

for each component 1i. Of course, it is understood that at
equilibrium, the chemical potential is uniform throughout phase
;: W E‘] Wl}/hét

Vp; = 0 throughout Phase 1 or 2 {7)

When the solute i interacts with the rest of the universe outside
our system, this criteria has to be modified (e.g. Our gas
molecules inside the column of air interact with the earth
outside the c¢olumn =-- this is gravity.) When the solute
experiences an force from outside the system, then (7) becomes:

where p; = chemical potential of component i

M; = mol. wgt. of i

¢, = potential energy/mass of i

For an ideal solution, the chemical potential 1s calculated from:
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duy = RT dlnc;g (9)
Subsituting (9) into (8) and integrating yields (6). Let me make

one simplification: divide numerator and denominator of the
exponent by Avogadro’s number. Now define the new numerator as

¢-= (M/N,) @,

which is the potential energy per solute molecule. Likewise,
define the new denomenator as

k = R/NA
which we call Boltzmann‘’s constant, In terms of our new
variables, (6) becomes:
c{x) = cgexpl[-9:x) /kT] (10)

which is called Boltzmann’s equation.

Sedimentation Equilibrium of a Hydrosol

Now we have the theoretical
basis for interpreting the
experiments of Perrin. Suppose I
disperse colloidal ©particles in
water. Perrin used gamboge.” Say
the particles are all 0¢.lum in
diameter, for example, According
to Boltzmann’s law, i1if I wait long
enough, the particles will
distribute themselves nonuniformly
with greater concentration at the
bottom of the container than at the
top.

e N

The net force on one colleoidal particle immersed in water is its
weight in air minus the weight of water displaced by it.
Assuming the particles have spherical shape and all have the same
size, then:

_ 4 3. _
fg = 3na (pp Pelg

is the net gravitational force felt by any single particle. This
is independent of where the particle is located (as long as it’s

A gum resin obtained from a tropical Asian tree used as a yellow
pigment.
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submerged), so the gravitational potential energy of one particle
is Jjust this force times z:

o = fgz

and Boltzmann’s equation requires:
c(z) = coexp(—fgz/kT)

where cg is the value of ¢ at the bottom of the container (z=0).
4

Plotted on semi-log coordinates, s
this eqguation is a straight 1line

whose slope is f_/kT. Perrin

measured the concentration profile Q”%<:.
and determined this quantity for
particles of known size and thus

known f_. He could deduce k and so

could infer the value of Avogadro’s

number:

Np = R/k - - >

On the other hand, if k is known, then we can deduce fg and thus
the size of the particles.

Rate of Sedimentation

Now let’s try to estimate how long it takes to reach this
equilibrium state. Does it take seconds? days? years? From
Fick’s law of diffusion:

{flux due to B.M.} = -DVc¢

Now we have a second mechanism for
moticn. In addition to Brownian
motion, a collecidal particle also
experiences the force field, e.g.,

gravity. As a result of this S
applied force, the particle ‘begins - ?h“-"’
to move. In a viscous fluid like
water, the particle will achieve a
terminal velocity which is
proportional to the force:
!p = £/B '-i.rf.z_ = % r/fi.
where is called the friction coefficient of the particle. For

small spherical particles of radius a, the mobility is given by
Stokes law:

B = 6orpa
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To get the flux due to migration in the force field, we multiply
the terminal velocity of the particles by their concentration at
that location:

{flux due to force} = (£/B}c
Adding these two contributions to the flux, we have
Jd = -DVc + (£/B)c
or Jd = -DVc - c(V4/B)
At equilibrium the flux must vanish everywhere, leaving
dc/c = -(1/BD)d¢
Integration gives:
c = coexp(—¢/BD)

where ¢, is the particle concentration at the location where ¢=0
(i.e. at the reference state).

Thus result looks a lot like Boltzmann’s equation, although the
two equations were derived using very different principles.
Clearly the concentration profile should be the same, regardless

of how we calculate it. Equating the exponents of the two
expressions

D = kT/B
which is called the Nernst-Einstein equation. For spherical

particles, we can substitute for the friction coefficient:

D = kT/6rpa.

which is called the Stokes-Einstein equation. Thus the particle
size can also be inferred from measurments of the diffusion
coefficients of the particles.

Electrostatics

Another powerful technique for studying colloidal dispersions
is light scattering. Light is electromagnetic radiation. When
light passes through a dielectric material, the atoms cof that
material feel a rapidly fluctuating electric and magnetic fields.
Te understand light scattering, you must understand how atoms
respond to fluctuating electric fields.




