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SUMMARY

Cohesin is a multisubunit complex that medi-
ates sister-chromatid cohesion. Its Smc1 and
Smc3 subunits possess ABC-like ATPases at
one end of 50 nm long coiled coils. At the other
ends are pseudosymmetrical hinge domains
that interact to create V-shaped Smc1/Smc3
heterodimers. N- and C-terminal domains
within cohesin’s kleisin subunit Scc1 bind to
Smc3 and Smc1 ATPase heads respectively,
thereby creating a huge tripartite ring. It has
been suggested that cohesin associates with
chromosomes by trapping DNA within its ring.
Opening of the ring due to cleavage of Scc1
by separase destroys sister-chromatid cohe-
sion and triggers anaphase. We show that
cohesin’s hinges are not merely dimerization
domains. They are essential for cohesin’s asso-
ciation with chromosomes, which is blocked by
artificially holding hinge domains together but
not by preventing Scc1’s dissociation from
SMC ATPase heads. Our results suggest that
entry of DNA into cohesin’s ring requires tran-
sient dissociation of Smc1 and Smc3 hinge
domains.

INTRODUCTION

By resisting spindle forces, sister-chromatid cohesion

makes possible the tension that is thought to stabilize ki-

netochore-microtubule attachments. Cohesion depends

on a highly conserved multisubunit complex called cohe-

sin, which consists of a heterodimer formed between two

SMC proteins, Smc1 and Smc3, that forms a complex

with two non-SMC proteins, Scc1 and Scc3 (Nasmyth

and Haering, 2005). In yeast, cohesin is loaded onto chro-
mosomes slightly before DNA replication with the assis-

tance of a separate Scc2/Scc4 protein complex (Ciosk

et al., 2000). Cohesin holds sister chromatids together un-

til initiation of anaphase, when cleavage of its Scc1 sub-

unit by separase releases cohesin from chromosomes

and destroys sister-chromatid cohesion (Uhlmann et al.,

2000).

SMC proteins form 50 nm long intramolecular antiparal-

lel coiled coils with a dimerization domain at one end and

one half of an ABC-type ATPase (‘‘head’’) at the other

(Gruber et al., 2003; Haering et al., 2002; Melby et al.,

1998). Heterotypic interaction between Smc1’s and

Smc3’s dimerization domains creates a huge V-shaped

structure with ABC ATPase heads at its two apices and di-

merization domains at its central ‘‘hinge.’’ ATP bound to

Walker A and Walker B motifs within Smc1’s head binds

to a signature motif within Smc3’s head and vice versa,

creating at least transiently a bipartite ring that hydrolyzes

both ATP molecules sandwiched between its two heads

(Haering et al., 2004). Cohesin’s Scc1 (kleisin) subunit

binds via a C-terminal winged-helix domain to Smc1’s

head and via N-terminal sequences predicted to form

a winged-helix or helix-turn-helix domain to the Smc3

head of the same Smc1/Smc3 heterodimer. This creates

a huge tripartite ring with a diameter of about 40 nm, which

is opened by cleavage of Scc1’s central region by sepa-

rase (Gruber et al., 2003; Haering et al., 2002, 2004).

It has been suggested that cohesin grasps chromo-

somes topologically, by trapping DNA molecules inside

its ring. If so, cohesin rings must either assemble

de novo around chromatin fibers or (more likely) possess

a gate that transiently opens to admit entry of DNA. Using

the yeast S. cerevisiae as a model system, we show that

linkage of Smc1’s and Smc3’s hinge domains by rapamy-

cin-dependent dimerization of FKBP12 and Frb hinders de

novo association of cohesin with DNA and blocks estab-

lishment, but not maintenance, of sister-chromatid cohe-

sion. Our findings are consistent with the notion that DNA

entry depends on transient dissociation of cohesin’s

Smc1 and Smc3 hinge domains.
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RESULTS

Fusion of Scc1 to Either Smc1 or Smc3 Heads Does

Not Prevent Establishment of Sister-Chromatid

Cohesion

Two observations suggest that preassembled cohesin

rings can associate with chromosomes. First, cohesin

subunits stored in Xenopus eggs are preassembled into

complexes but are nevertheless capable of associating

with chromatin (Losada et al., 1998). Second, most cohe-

sin in animal cells that dissociates from chromosomes

during prophase in the absence of any cleavage by sepa-

rase exists as a soluble complex during mitosis and reas-

sociates with chromosomes during telophase (Waizeneg-

ger et al., 2000). If cohesin associates with chromosomes

by trapping DNA, then its ring must have an entry gate. We

envision four possibilities (Figure 1A): Scc1 dissociates

transiently from the Smc1 or Smc3 head (carabiner

models A and B), Scc1 dissociates transiently from both

heads (the bicycle lock model), or Smc1 and Smc3 hinge

domains dissociate transiently (the clothes peg model).

To investigate whether Scc1’s C-terminal winged-helix

domain must dissociate from Smc1’s ATPase head, we

expressed from an ectopic chromosomal site a myc-

tagged Scc1-Smc1 fusion in which Scc1’s C terminus

was connected to Smc1’s N terminus (Figure 1B). The

fusion protein was absent in cells arrested in G1 by a factor

but present in cycling and nocodazole-arrested cells

(Figure 1B). The latter contained only full-length (240 kDa)

protein, while cycling cells also contained a 200 kDa

separase fragment. Upon sporulation, diploid yeast cells

heterozygous for SCC1 and SMC1 gene deletions and

SCC1-SMC1 often produced tetrads in which three or

four spores gave rise to colonies, some of which con-

tained deletions of both SCC1 and SMC1 (Figure 1C).

Strains that expressed the Scc1-Smc1 fusion protein but

neither Scc1 nor Smc1 grew at 30�C (Figure 1D) and

37�C (data not shown).

If the Scc1-Smc1 fusion were only functional because

its Scc1 moiety bound to a Smc1 head from a separate fu-

sion protein, then cells should remain sensitive to overex-

pression of Scc1’s C-terminal cleavage fragment (CScc1),

which competes with full-length Scc1 (Rao et al., 2001).

Fusion of Scc1 to Smc1 in fact overrides toxicity caused

by CScc1 (Figure 1E). Scc1 must therefore interact with

the Smc1 protein to which it is fused. This was confirmed

by the finding that the fusion suppresses the temperature

sensitivity (data not shown) caused by a mutation (Q544K)

in Scc1’s C-terminal winged-helix domain that reduces its

affinity for Smc1’s head (Haering et al., 2004). Scc1’s de-

tachment from Smc1’s ATPase head cannot be necessary

for generating sister-chromatid cohesion.

To explore whether detachment of Scc1’s N terminus

from Smc3’s head is necessary, Smc3’s C terminus was

connected to Scc1’s N terminus. Spores expressing

Smc3-Scc1 instead of individual Smc3 and Scc1 proteins

also formed colonies (Figures 1F and 1G). This fusion is

not fully functional, as cells grow more slowly than wild-
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type at 37�C (data not shown). Importantly, fusion of

Scc1 to Smc3 but not to Smc1 suppressed the lethality

(data not shown) caused by mutations (I24K, A47K,

V81K, and D92K) in Scc1’s N terminus that reduce its in-

teraction with Smc3’s head (Arumugam et al., 2006), im-

plying that the fusion’s Scc1 moiety binds to the Smc3

head with which it is joined. We conclude that detachment

of Scc1’s N terminus from Smc3’s ATPase head is not

necessary for cohesin function.

Connection of Scc1 to Both of Its SMC Heads

Does Not Destroy Cohesin Function

To exclude the possibility that Scc1 detaches from both

Smc1 and Smc3 ATPase heads, we created a Smc3-

Scc1-Smc1 fusion protein. This protein was not functional

even in the presence of TEV protease that cleaves the

peptide sequences connecting Scc1 with Smc3 and

Smc1. This could be for trivial reasons. The fusion might

not fold correctly due to topological problems (see

Figure S5 in the Supplemental Data available with this ar-

ticle online), and/or, due to its length, it might not be ex-

pressed rapidly enough at the onset of S phase. We there-

fore used rapamycin-dependent dimerization of human

FKBP12 and Frb to link Scc1 to Smc1 in a conditional

manner (Ho et al., 1996) in a cohesin ring containing

a Smc3-Scc1 fusion protein (Figure 2C). For these exper-

iments, we used yeast strains carrying the TOR1-1 muta-

tion, which confers rapamycin resistance, and a deletion

of the FPR1 gene, which eliminates the most abundant

yeast FKBP12-like protein and reduces binding of ‘‘free’’

yeast FBKP12-like proteins to the Frb moiety fused to

Scc1. Fusion of human FKBP12 to Smc1’s C terminus, fu-

sion of Frb to Scc1’s C terminus, and the presence of both

fusions all failed to affect yeast growth in either the ab-

sence or presence of 100 nM rapamycin (Figure 2A). Inter-

estingly, when cells expressed both Smc1-FKBP12 and

Scc1-Frb, rapamycin suppressed the lethality caused by

two scc1 mutations (S525N and Q544K) that weaken its

binding to Smc1’s head (Figure 2B), implying that rapamy-

cin does indeed induce connection of Scc1 with Smc1.

The N terminus of the Scc1-Frb fusion protein was next

fused to Smc3’s C terminus. Cells expressing this

Smc3-Scc1-Frb fusion along with Smc1-FKBP12 (as the

sole sources of Smc1, Smc3, and Scc1) were viable in ab-

sence of rapamycin and even formed colonies in its pres-

ence, albeit more slowly than in its absence (Figure S1A).

Importantly, introduction of the scc1 Q544K mutation cre-

ated a strain that grew only in the presence of rapamycin

(Figure S1B).

To investigate the effect of this alteration in cohesin’s to-

pology on sister-chromatid cohesion, we synchronized

cells in G1 by growing unbudded cells isolated by centrif-

ugal elutriation in the presence of a factor and then trans-

ferred them to fresh medium with or without rapamycin.

Neither DNA replication nor the onset of nuclear division

was affected by rapamycin (Figure S1C). This suggests

that the drug did not greatly compromise establishment

of sister-chromatid cohesion because a major defect



would have activated the spindle assembly checkpoint

and delayed degradation of securin by 20–30 min (Mi-

chaelis et al., 1997). Separate aliquots of the synchronized

cells were released (with and without rapamycin) into me-

dium containing nocodazole, which blocks nuclear divi-

sion. Fluorescence in situ hybridization (FISH) revealed

that sister CEN4 sequences were split in 24% of cells in

the absence of rapamycin (Figure 2D), which is more fre-

quent than in wild-type. Crucially, rapamycin caused

only a very modest increase in the frequency of split

CEN4 sequences, from 24 to 28% (Figure 2D). To ensure

that this protocol could have detected deleterious effects

of a rapamycin-mediated interconnection, we repeated

these experiments with a yeast strain in which FKBP12

and Frb interconnect Smc1’s and Smc3’s hinge domains

in the presence of rapamycin (see below). Rapamycin

both delayed nuclear division by 20 min (Figure S1D)

and caused the frequency of split CEN4 sequences to

rise from 12 to 49% (Figure 2D). These data imply that hin-

dering a hypothetical disconnection of Scc1’s C terminus

from Smc1’s ATPase head has no major deleterious effect

on cohesin’s ability to establish sister-chromatid cohe-

sion, even when its N terminus is fused to Smc3’s ATPase

head.

To test whether blocking dissociation of Scc1 from

SMC heads has any effect on cohesin’s association with

chromosomes, we used quantitative PCR to measure as-

sociation of a myc-tagged Scc3 subunit with specific DNA

sequences following chromatin immunoprecipitation

(ChIP). Some Scc3 was associated with chromatin in G1

synchronized cells, which was unexpected. A similar re-

sult was also obtained with wild-type cells (data not

shown). More important, the increase in Scc3’s associa-

tion with centromeric and pericentric sequences as cells

enter S phase was unaffected by rapamycin (Figure 2E).

Thus, connecting Smc3-Scc1-Frb with Smc1-FKBP12

using rapamycin has little discernable effect on cohesin’s

ability to load onto chromosomes. These data are difficult

to reconcile with the bicycle lock model.

MP1 and p14 Interact Tightly Enough to Resist

Spindle Forces

We next addressed whether dissociation of cohesin’s

hinge domains is necessary. If their sole function were to

hold Smc1 and Smc3 together, then it should be possible

to replace them by a different pair of heterodimer-forming

protein domains. This would not be possible if SMC hinges

also served as DNA entry gates. To test whether candi-

date heterodimers were capable of keeping cohesin rings

closed tightly enough to maintain sister-chromatid cohe-

sion, we inserted into Scc1’s central region pairs of protein

domains connected by three tandem TEV protease cleav-

age sites (Figure 3A) and measured whether TEV protease

induction (from the GAL promoter) would trigger nuclear

division in cells arrested in metaphase due to Cdc20

depletion. Tightly interacting protein pairs should hold N-

and C-terminal Scc1 cleavage fragments together and

block sister-chromatid disjunction. Cells in which FKBP12
and Frb flanked TEV sites underwent anaphase as effi-

ciently as cells lacking these domains in the absence of ra-

pamycin, whereas in its presence, the onset of anaphase

was delayed by about 30 min but was not blocked (data

not shown). The dissociation constant of FKBP12 and

Frb in the presence of rapamycin is in the low nanomolar

range, but the half-life of the complex is relatively short

(t z 30 s) (Banaszynski et al., 2005). Our data suggest

that the complex is not stable enough to resist spindle

pulling forces over extended periods of time. Two tandem

copies of FKBP12 and Frb were capable of resisting ana-

phase onset in the presence of rapamycin (data not

shown), but such a combination could not be used to re-

place Smc1 and Smc3 hinges.

We next tested a pseudosymmetric protein complex

consisting of MP1 and p14 (t z 20 min) (Kurzbauer

et al., 2004). This complex blocked sister-chromatid dis-

junction despite complete Scc1 cleavage (Figure 3A) but

did not do so after activation of separase (Figure 3A,

+Cdc20), which cleaves to the left and right of MP1 and

p14. Remarkably, cells with MP1 and p14 surrounding

TEV sites proliferated vigorously upon continuous TEV

protease induction (Figure 3B). We conclude that the

MP1/p14 complex holds N- and C-terminal halves of

Scc1 together in a manner stable enough to support mito-

sis. An important corollary is that disconnection of Scc1’s

N-terminal half from its C-terminal half rather than cleav-

age of Scc1 per se destroys sister-chromatid cohesion.

Hinge-Substituted Smc1/Smc3 Heterodimers Form

Rings with Scc1 and Hydrolyze ATP

Structural information (Figure 4A) about the MP1/p14

complex (PDB ID code 1VET) and the bacterial homodi-

meric SMC hinge (PDB ID code 1GXL) was used to design

eight different hybrids that varied in the transition between

Smc1’s N-terminal amphipathic a helix and the p14 do-

main and between p14 and Smc1’s C-terminal amphi-

pathic a helix. Western blotting following immunoprecipi-

tation showed that two Smc1p14 hybrids (myc9-tagged)

interacted with Scc1 (Pk6-tagged) as efficiently as a hinge-

less version of Smc1 that, like Smc1p14, has no SMC

binding partner (data not shown). Efficient binding of

Scc1 implies that the ATPase heads of the hybrid proteins

are folded correctly. The other six hybrids interacted with

Scc1 only poorly (data not shown).

We then replaced Smc3’s hinge domain by mouse MP1.

Five different HA3-tagged Smc3MP1 hybrids were intro-

duced into a yeast strain expressing a Pk6-tagged version

of Scc1 (Scc1-Pk6) and one of the ‘‘good’’ myc9-tagged

Smc1p14 hybrids. Three out of five Smc3MP1 hybrid pro-

teins coprecipitated with both Scc1 and Smc1p14 with an

efficiency comparable to that between Smc3 and Scc1 or

Smc3 and Smc1 (data not shown). In all three cases, di-

merization between Smc3MP1 and Smc1p14 increased

the efficiency with which Scc1 bound to Smc1p14 (data

not shown). These data imply that Smc1p14 forms a heter-

odimer with Smc3MP1 and that Scc1’s C-terminal winged

helix binds to Smc1’s ATPase head.
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Figure 1. Connection of Scc1 with Either SMC Head Permits Cohesion

(A) Models for cohesin ring opening.

(B) Scc1-Smc1 fusion protein expression. Cells of strains K699 (MATa) and K11680 (MATa PSCC1SCC1-TEV3-SMC1-myc18 Dscc1 Dsmc1) were

grown in exponential phase (cyc) and arrested in metaphase using nocodazole (M) or in G1 phase by addition of a factor peptide (G1). Cell extracts

were prepared and analyzed by blotting for myc and Swi6 protein. For detailed genotypes, see Table S1.

(C) SCC1-SMC1 is functional. Genotypes of spores (germinated on YPD plates at 30�C) from diploid yeast strains K12314 (MATa/a SCC1/Dscc1

SMC1/Dsmc1) and K13630 (MATa/a SCC1/Dscc1 SMC1/Dsmc1 leu2/leu2::PSCC1SCC1-TEV3-SMC1::LEU2) are shown.

(D) SCC1-SMC1 supports cell growth. Five-fold serial dilutions of strains K699 (wt) and K12385 (MATa Dscc1 Dsmc1 PSCC1SCC1-TEV3-SMC1) (fu)

were plated onto YPD and grown at 30�C.
526 Cell 127, 523–537, November 3, 2006 ª2006 Elsevier Inc.



Figure 2. Linking Scc1 to Both SMC Heads

Permits Sister-Chromatid Cohesion

(A) Linking Scc1’s C terminus with Smc1’s

head by rapamycin-dependent dimerization

permits cohesin function. Strains K14708

(MATa Dfpr1 TOR1-1) (wt) and K14195 (MATa

Dfpr1 TOR1-1 SCC1-Frb SMC1-FKBP12)

(Fk+Fr) were plated on YPD containing 0 or

100 nM rapamycin. Plates were incubated

at 30�C.

(B) Linking Scc1’s C terminus with Smc1’s

head suppresses mutations in Scc1’s C termi-

nus. Strains K14195 (wt), K14196 (MATa Dfpr1

TOR1-1 scc1(S525N)-Frb SMC1-FKBP12)

(S525N), and K14197 (MATa Dfpr1 TOR1-1

scc1(Q544K)-Frb SMC1-FKBP12) (Q544K)

were grown in the presence of 100 nM rapamy-

cin and plated onto YPD containing 0 or 100 nM

rapamycin.

(C and D) Linking Scc1 to both SMC heads per-

mits sister-chromatid cohesion. Cells of strains

K30016 (MATa Dfpr1 TOR1-1 Dscc1 Dsmc3

PSCC1SMC3-TEV3-SCC1-Frb SMC1-FKBP12)

and K14668 (MATa Dfpr1 TOR1-1 Dsmc3

SMC3Frb SMC1FKBP12) were synchronized

by centrifugal elutriation and incubation with

a factor for 3 hr at 25�C. Cells were released

from the arrest and incubated for 3 hr in noco-

dazole with or without rapamycin. Cells were

fixed and subjected to fluorescence in situ hy-

bridization (FISH) using a Cy3-labeled DNA

probe covering a 16.6 kb region around the

centromere on chromosome IV.

(E) Linking Scc1 to both SMC heads does not

block cohesin’s DNA association. Cells of

strain K14829 (MATa Dfpr1 TOR1-1 Dscc1

Dsmc3 PSCC1-SMC3-TEV3-SCC1-Frb SMC1-

FKBP12 SCC3-myc18) were synchronized by

centrifugal elutriation and arrested with a factor

for 3.5 hr at 25�C. Cells were released by wash-

ing with YPD medium and incubated in the

presence or absence of rapamycin. Replication

timing was monitored by flow cytometry. The

levels of cohesin associated with DNA were de-

termined by chromatin immunoprecipitation

(ChIP) and quantitative PCR using primer pairs

specific to three different regions of chromo-

some VI (see below).
To test whether Scc1’s N terminus binds to the Smc3

head of the hinge-substituted SMC dimer (hsSMC), we ex-

pressed either wild-type Smc1/Smc3 or hinge-substituted

versions in cells that express a TEV-cleavable version of
Scc1 that is tagged at both N and C termini with myc

epitopes (Figure 4B) (Arumugam et al., 2003). Sepharose

beads containing immunoprecipitated HA3-tagged

Smc3 or Smc3MP1 proteins were either directly boiled
(E) SCC1-SMC1 cells are resistant to CScc1. Strains K11969 (MATa YCp-PGAL1CScc1-HA3) (wt) and K11970 (MATa Dscc1 Dsmc1 PSCC1SCC1-

TEV3-SMC1-myc18 YCp-PGAL1CScc1-HA3) (fu) were plated on�TRP plates containing either 2% glucose or 2% raffinose plus galactose and grown

at 25�C. Expression of CScc1 (aa 268–566) was confirmed by detecting HA epitopes in blots from extracts of cells shifted for 3 hr from raffinose to

glucose (�CScc1) or galactose (+CScc1). The fusion strain grows significantly more slowly than wild-type on�Trp medium, possibly because SCC1-

SMC1-myc18 cells more frequently lose the centromeric plasmid.

(F) SMC3-SCC1 is functional. Genotypes of spores from diploid yeast strains K12542 (MATa/a SCC1/Dscc1 SMC3/Dsmc3) and K13638 (MATa/a

SCC1/Dscc1 SMC3/Dsmc3 ura3/ura3::PSCC1SMC3-TEV3-SCC1::URA3) after dissection on YPD at 30�C.

(G) SMC3-SCC1 supports cell growth. Serial dilutions of strains K699 (wt) and K12988 (MATa Dscc1 Dsmc3 PSCC1SMC3-TEV3-SCC1) (fu) plated onto

YPD and grown at 30�C are shown.
Cell 127, 523–537, November 3, 2006 ª2006 Elsevier Inc. 527



Figure 3. MP1 and p14 Interact Tightly Enough to Resist the Mitotic Spindle

(A) Yeast strains K12822 (MATa PMET3CDC20 YEp Dscc1 HA6-SCC1(TEV220)), K12823 (MATa PMET3CDC20 YEp-PGAL1TEV Dscc1 HA6-

SCC1(TEV220)), K12824 (MATa PMET3CDC20 YEp Dscc1 HA6-SCC1MP1-(TEV220)-p14), and K12825 (MATa PMET3CDC20 YEp-PGAL1TEV Dscc1

HA6-SCC1MP1-(TEV220)-p14) were grown to log phase in synthetic medium lacking methionine (cyc) and arrested for 2 hr in YEP medium supple-

mented with 2 mM methionine and 2% raffinose (0 min). Expression of TEV protease was induced by addition of 2% galactose (0–150 min). Cells were

transferred back to synthetic medium lacking methionine at 150 min (+Cdc20). Mono- and binucleate cells were counted after staining with DAPI.

Protein extracts were prepared and probed by immunoblotting for HA epitopes.

(B) Dilution of cells of strains K13653 (MATa Dscc1 HA6-SCC1(TEV220) YEp-PGAL1TEV) and K13654 (MATa Dscc1 HA6-SCC1MP1-(TEV220)-p14

YEp-PGAL1TEV) were plated on synthetic medium lacking tryptophan with glucose or raffinose and galactose. Plates were incubated at 30�C.
in SDS buffer (IP) or incubated with or without TEV prote-

ase for 45 min at 16�C, liberating some protein into the su-

pernatant (SN) but leaving some associated with the

beads (B). Smc3 and Smc3MP1 as well as their respective

partners Smc1 and Smc1p14 remained bound to the

beads even after TEV protease treatment (Figure 4B, mid-

dle and right panels). Both full-length Scc1 (1–566) and its

N-terminal separase cleavage fragment (1–180) were col-

lected on the beads by HA3-tagged Smc3 (middle panel)

and Smc3MP1 (right panel) proteins with equal efficiency

but not by untagged Smc3 protein (left panel). The C-ter-

minal separase cleavage fragment (180–566) is more un-

stable, and less was detected with both sets of SMC pro-

teins. Cleavage of Scc1 by TEV generates a novel set of

cleavage fragments, namely an N-terminal (1–268) and
528 Cell 127, 523–537, November 3, 2006 ª2006 Elsevier Inc.
a C-terminal (269–566) fragment. Crucially, both frag-

ments remained on the beads, whether they contained

Smc3 or Smc3MP1. These observations indicate that

Scc1’s N-terminal and C-terminal domains associate

with the Smc3 and Smc1 heads respectively, forming tri-

partite rings, even when the Smc1/Smc3 hinge has been

replaced by MP1/p14.

We next tested whether the ATPase heads of Smc1p14/

Smc3MP1 heterodimers can hydrolyze ATP. Scc1’s C-

terminal winged-helix domain stimulates the ATPase ac-

tivity of purified SMC heterodimers in vitro (Arumugam

et al., 2006). Both wild-type and hinge-substituted SMC

preparations had very low ATP hydrolysis activities on

their own (Figure 4C, black lines), but addition of Scc1’s

C-terminal domain enhanced the activities of both



samples (red lines). Importantly, mutation of Smc3MP1’s

ATP binding pocket (K38I) abolished the stimulation of

ATP hydrolysis by Scc1. These data imply that the Smc1

and Smc3 heads of hinge-substituted heterodimers are

folded properly and cooperate to hydrolyze ATP in a man-

ner similar to wild-type Smc1/Smc3 heterodimers.

Hinge-Substituted SMC Dimers Cannot Associate

with Chromosomes

Tetrad dissection of asci from diploids heterozygous for

SMC1 and SMC3 deletions showed that ectopic hinge-

substituted SMC genes could not support growth of

spores lacking endogenous SMC1 and SMC3 genes

(Figure S6A). To address whether hsSMCs are loaded

onto chromosomes in vivo, we analyzed chromosome

spreads from nocodazole-arrested cells. Smc1-myc9,

but very little Smc1p14-myc9, colocalized with DAPI-

staining material (Figure S6B). To measure this more

quantitatively, we used real-time PCR and ChIP to detect

association with four loci on chromosome VI. Smc1-myc9

protein precipitated about 1.5% to 2.5% of the input ma-

terial at two pericentric loci (MSH4 and SPB4), at the cen-

tromere (CEN6), and at a cohesin-rich arm site (MET10-

SMC2) (Figure 4D, middle). In contrast, Smc1p14-myc9

precipitated few, if any, of these sequences (Figure 4D).

We also performed chromatin immunoprecipitations with

antibodies against an HA3 epitope tag on Smc3 and

Smc3MP1 and hybridized the immunoprecipitated DNA

to a tiled oligonucleotide array representing the entire

length of chromosome VI (Figure 4E). This confirmed that

wild-type Smc3 protein accumulates at centromeric and

pericentromeric DNA sequences as well as at specific

sites along the chromosome arms. This pattern was not

observed with Smc3MP1 protein, which did not precipi-

tate any specific region of chromosome VI (Figure 4E, bot-

tom panel). We conclude that hsSMC proteins do not

associate stably with chromosomes despite being trans-

ported normally into the nucleus (data not shown). This im-

plies that the hinge domains of Smc1 and Smc3 have

a role in cohesin’s association with chromosomes that ex-

tends beyond merely holding Smc1 and Smc3 together.

Artificial Connection of Cohesin’s Smc1 and Smc3

Hinge Domains Prevents Establishment, but Not

Maintenance, of Sister-Chromatid Cohesion

Having excluded DNA entry through a gate created by dis-

sociation of Scc1 from cohesin’s ATPase heads, hinge

opening would appear to be the only realistic alternative.

According to this notion, the MP1/p14 interaction cannot

substitute for the Smc1/Smc3 hinge because the former

cannot be opened in a manner that permits DNA entry.

This hypothesis makes the key prediction that intercon-

nection of Smc1 and Smc3 hinges by artificial means

should hinder trapping of DNA by cohesin and, as a conse-

quence, should destroy its ability to establish sister-chro-

matid cohesion. We therefore asked whether it is possible

to insert FKBP12 and Frb into Smc1 and Smc3 hinges re-

spectively without compromising cohesin function and, if
so, whether the interconnection of FKBP12 and Frb by

rapamycin inactivates cohesin.

The hinge domains of cohesin, condensin, and most

bacterial SMC proteins are highly conserved throughout

their entire length. There nevertheless exist short

stretches whose amino acid sequences and length are

variable. Such regions form loops on the surface of the

Thermotoga maritima Smc crystal structure with a high

temperature factor that is indicative of structural flexibility.

This raises the possibility of inserting the small globular

domains of FKBP12 and Frb into one or another of these

loops without greatly altering the overall structure of the

SMC hinge domain. Remarkably, insertion of FKBP12

via 10 amino acid long linker peptides into Smc1’s hinge

domain at two out of three positions (Figure 5A, pink ar-

rows) did not compromise Smc1’s function. Likewise, in-

sertion of Frb at analogous positions within Smc3’s hinge

(purple arrows) did not perturb the function of Smc3. Even

more remarkable, certain combinations of Smc1FKBP12

and Smc3Frb hybrids produced functional Smc1/Smc3

heterodimers. Thus, a heterodimer formed between

Smc1 with FKBP12 inserted at position L597 (horizontal

pink arrow) and Smc3 with Frb inserted at position S606

(horizontal purple arrow) supported wild-type-like growth

of yeast colonies at 30�C (Figure 5B, left panel) and

37�C (data not shown).

To test the sensitivity of this SMC1FKBP12 SMC3Frb

strain to rapamycin, we introduced the TOR1-1 mutation

to confer rapamycin-resistant growth and a deletion of

FPR1 (Dfpr1) to minimize binding of Frb to rapamycin

bound to yeast FKBP12-like proteins. One hundred nano-

molar rapamycin inhibited the growth of SMC1FKBP12

SMC3Frb cells (Fk + Fr), but not that of wild-type (WT),

SMC1FKBP12 (Fk), or SMC3Frb strains (Fr) (Figure 5B,

right panel), implying that interaction between FKBP12 in-

serted into Smc1’s hinge and Frb inserted into Smc3’s

hinge does indeed inactivate cohesin function. We ob-

served a similar effect when FKBP12 was inserted into

Smc1 at position I647 (vertical pink arrow) instead of posi-

tion L597 (data not shown).

It is possible that the rapamycin-dependent lethality is

caused not by the interconnection of Smc1 and Smc3

half-hinges per se but rather by the formation of a bulky

Frb-rapamycin-FKBP12 complex in their vicinity. To ex-

clude this possibility, we tested whether the rapamycin-

dependent lethality is suppressed by the presence of

yeast Fpr1, whose complexes with rapamycin should

compete with rapamycin-FKBP12 complexes associated

with Smc1 for binding to Smc3Frb. Crucially, the presence

of Fpr1 fully relieved the inhibition by rapamycin of

SMC1FKBP12 SMC3Frb cell growth (Figure 5C). If Fpr1

suppressed lethality merely by titrating rapamycin, then

increasing the drug concentration would kill cells. This is

not the case. SMC1FKBP12 SMC3Frb TOR1-1 cells lack-

ing Fpr1 are sensitive to 10 nM rapamycin, while cells con-

taining Fpr1 are completely resistant to 10 mM rapamycin

(Figure S4). Moreover, Fpr1 is only about ten times more

abundant than Smc1 (Newman et al., 2006).
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Figure 4. Hinge-Substituted SMC Heterodimers Form Rings with Scc1 and Hydrolyze ATP with Wild-Type Kinetics but Cannot

Associate with Chromosomes

(A) Ribbon diagrams of the structures of a SMC hinge homodimer from T. maritima (top) and the MP1-p14 complex from mouse (bottom). Diagrams

were produced by Cn3D using the PDB ID codes 1GXL and 1VET, respectively.

(B) Hinge-substituted SMC heterodimers form tripartite rings with Scc1. Yeast strains K14084 (MATa/a myc9-SCC1TEV268-myc9/ -PGAL1SCC1/

SCC1), K14081 (MATa/a myc9-SCC1TEV268-myc9/(SMC1-myc9+SMC3-HA3) PGAL1SCC1/SCC1), and K14082 (MATa/a myc9-SCC1TEV268-

myc9/(smc1p14-myc9+smc3MP1-HA3) PGAL1SCC1/SCC1) were grown to log phase in YPD medium. Cleared extracts (IN) were immunoprecipitated

with anti-HA antibodies, and supernatants were removed (FT). The beads were washed (IP) and incubated with or without TEV protease for 45 min at

16�C. Supernatant fractions were collected (SN) and proteins eluted from the beads using SDS (B). Samples were analyzed by immunoblotting using

a-HA and a-myc antibodies.

(C) Hinge-substituted SMC heterodimers hydrolyze ATP. (Left) Purified SMC heterodimers (5 mg per lane) were separated on a 6% SDS polyacryl-

amide gel and stained with Coomassie brilliant blue R-250 (1, Smc1 + Smc3; 2, Smc3MP1; 3, Smc1p14). (Right) ATP hydrolysis assays were
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Figure 5. Linking SMC Hinge Domains by the FKBP12-Frb-Rapamycin Complex Is Lethal

(A) Ribbon diagrams of the structures of a FKBP12-rapamycin-Frb complex and a bacterial SMC hinge-domain dimer. Dotted lines represent 10 aa

linker peptides that insert FKBP12 into Smc1’s hinge domain and Frb into Smc3’s hinge domain.

(B) Rapamycin-dependent lethality of hinge-inserted SMCs. Yeast strains K14708 (MATa Dfpr1 TOR1-1) (wt), K14645 (MATa Dfpr1 TOR1-1

SMC1FKBP12) (Fk), K14644 (MATa Dfpr1 TOR1-1 Dsmc3 SMC3Frb) (Fr), and K14643 (MATa Dfpr1 TOR1-1 Dsmc3 SMC3Frb SMC1FKBP12)

(Fk+Fr) were grown for 2 days on YPD plates in the absence or presence of 100 nM rapamycin.

(C) Fpr1 rescues rapamycin-dependent lethality. Yeast strains K11607 (MATa TOR1-1), K14708, K14642 (MATa TOR1-1 Dsmc3 SMC3Frb

SMC1FKBP12), and K14643 were grown for 2 days on YPD plates in the absence or presence of 100 nM rapamycin.
To test whether rapamycin perturbs establishment of

sister-chromatid cohesion in SMC1FKBP12 SMC3Frb

cells, we measured association of sister DNA sequences

at the URA3 locus 35 kb away from CEN5 that were

marked by green fluorescent protein (GFP) (Michaelis
et al., 1997). MATa SMC1FKBP12 SMC3Frb cells whose

APC/C activator Cdc20 was under the control of the me-

thionine-repressible MET3 promoter were first arrested

in G1 phase by addition of a factor and then released in

the presence or absence of rapamycin into medium
performed using the same SMC preparations at 0.5 mM and 250 mM ATP in the absence (black curve) or presence (red curve) of 6 mM C-terminal Scc1

fragment. g32P-labeled ATP and 32Pi were resolved by thin-layer chromatography, and ratios of Pi to Pi + ATP were plotted for each time point. Es-

timated CScc1-dependent hydrolysis rates are given as molecules of ATP hydrolyzed per minute per SMC heterodimer at 250 mM ATP. The variable

levels of activity in the absence of CScc1 presumably stem from different expression and purification efficiencies and represent background activity

from impurities.

(D) ChIP of wild-type and hinge-substituted SMC proteins. Yeast strains K11990 (MATa Scc1-Pk6), K14022 (MATa Scc1-Pk6 (SMC1-myc9+SMC3-

HA3)), and K14024 (MATa Scc1-Pk6 (smc1p14-myc9+smc3MP1-HA3)) were grown in log phase and fixed with 3% formaldehyde. Samples were

processed for ChIP analysis using a-myc antibodies. Efficiency of chromatin immunoprecipitation (ratio of input versus IP) was measured by real-

time PCR using four primer pairs (for positions on chromosome VI, see below). Error bars indicate standard deviations from the arithmetic mean cal-

culated from two independently processed samples.

(E) Distribution of wild-type and hinge-substituted SMCs around the chromosome VI centromere. Yeast strains K13581 (MATa

SMC1::(SMC1+SMC3-HA3)) and K13585 (MATa SMC1::(smc1p14+smc3MP1-HA3)) were arrested in mitosis using benomyl. Cells were then pro-

cessed for ChIP-on-chip analysis using a-HA antibodies. The blue shading represents the binding ratio of loci that show significant enrichment in

the immunoprecipitated fraction. The yellow line indicates the average signal ratio of loci that are not enriched in the immunoprecipitated fraction.

The scale of the vertical axis is log2. The horizontal axis shows kilobase units (kb). Original ChIP-on-chip data can be accessed from the GEO database

under the accession number GSE4827.
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supplemented with methionine, which allowed one syn-

chronous round of DNA replication followed by arrest in

metaphase. a factor-arrested cells contain a single GFP

dot, but chromosome duplication in the absence of rapa-

mycin creates a pair of GFP dots that are so close together

in most cells that they still appear as a single GFP dot,

even when cells enter metaphase (Figure 6A, black curve,

no rapamycin). DNA replication in the presence of rapa-

mycin, in contrast, caused duplicated GFP dots in 60%

of cells to split soon (20–40 min) after completion of S

phase (Figure 6A, red curve, 100 nM rapamycin). DNA rep-

lication in the presence of rapamycin also caused the ap-

pearance of nuclei whose chromosomal DNA did not

remain in the bud neck, with chromosomal DNA segregat-

ing to different poles of the cell (Figure 6A). We conclude

that rapamycin severely perturbs the establishment of sis-

ter-chromatid cohesion in SMC1FKBP12 SMC3Frb cells

when added prior to DNA replication. Experiments that

measured sister-chromatid cohesion in nocodazole-

arrested cells using FISH confirmed this conclusion

(Figure 2D).

To address whether interconnection of Smc1FKBP12

and Smc3Frb hinges by rapamycin compromises sister-

chromatid cohesion that has already been established,

we repeated the above experiment but added rapamycin

only after DNA replication had been completed, namely 80

min after release from a factor (Figure 6A, right panel). Un-

der these conditions, addition of rapamycin caused no

splitting of duplicated GFP dots, implying that linkage of

Smc1FKBP12 and Smc3Frb hinges by rapamycin hinders

establishment, but not maintenance, of sister-chromatid

cohesion. Lastly, interconnection of hinges by rapamycin

in metaphase cells had no effect on their ability to undergo

anaphase (Figure S4C).

Connection of Smc1 and Smc3 Hinge Domains

Hinders Cohesin’s Association with Chromosomes

To test whether rapamycin affects cohesin’s association

with chromosomes, we used real-time PCR to measure

coprecipitation with Pk9-tagged Scc1 of the core centro-

mere (CEN6), two pericentric regions (MSH4 and SPB4),

and a cohesin-rich arm site (MET10-SMC2) on chromo-

some VI (Figure 6B, bottom panel) as MATa

SMC1FKBP12 SMC3Frb cells enter S phase in the pres-

ence or absence of rapamycin. Scc1 protein is largely ab-

sent from G1-arrested cells and is resynthesized only

shortly before S phase (Michaelis et al., 1997). In the ab-

sence of rapamycin, Scc1’s association with the core cen-

tromere commenced slightly before and peaked during

the middle of S phase (25 min after release), at which point

5% of input DNA coprecipitated with Scc1 (Figure 6B,

black lines). Accumulation of cohesin at the centromere-

proximal pericentric site (SPB4) had a similar pattern,

but accumulation at MSH4, which is further away from

the core centromere, was less pronounced and took place

more slowly. Meanwhile, accumulation within the interval

between MET10 and SMC2 was slower still, peaking

only after completion of S phase. Crucially, rapamycin
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greatly reduced/delayed cohesin’s association with

CEN6 and SPB4 and had a similar but less pronounced ef-

fect at MSH4 and at MET10-SMC2 (Figure 6B, red lines).

DISCUSSION

The experiments described in this paper were predicated

on the notion that trapping of DNA inside cohesin’s tripar-

tite ring is essential for its stable association with chromo-

somes (Ivanov and Nasmyth, 2005). If preassembled rings

trap DNA, then at least one of the three interaction inter-

faces between Smc1, Smc3, and Scc1 must be transiently

broken. We tested first whether Scc1’s N- or C-terminal

domains must dissociate from Smc3 and Smc1 heads re-

spectively by fusing the C terminus of Smc3 to the N ter-

minus of Scc1 or the C terminus of Scc1 to the N terminus

of Smc1. Because neither fusion inactivated cohesin, we

conclude that DNA does not enter through a gate created

by the transient dissociation of just one end of Scc1 from

a SMC head.

During the course of these studies, we found that fusion

of Scc1 to Smc3’s head suppresses mutations in Scc1’s

N-terminal domain that compromise its association with

the Smc3 head. Likewise, fusion of Scc1 to Smc1’s

head suppresses some, but not all, mutations in Scc1’s

C-terminal winged helix that compromise its association

with a Smc1 head. These observations therefore confirm

that the interaction of Scc1’s N- and C-terminal domains

with the ATPase heads of Smc3 and Smc1 respectively

is essential for cohesin function.

The above experiments did not exclude the possibility

that a gate is created by the transient dissociation of

both N- and C-terminal domains of Scc1 from SMC heads.

We tested this bicycle lock model by fusing Smc3’s C ter-

minus to Scc1’s N terminus and using rapamycin to clamp

together Frb and FKBP12 fused to the C termini of Scc1

and Smc1, respectively. Crucially, rapamycin did not ex-

acerbate the nonlethal cohesion defects of cells express-

ing Smc3-Scc1-Frb along with Smc1-FKBP1 and had no

discernable effect on the loading of cohesin onto chromo-

somes. In the course of these studies, we also found that

loading of Scc1 onto centromeres and pericentric regions

was largely unaffected by rapamycin-dependent dimer-

ization of Smc1 and Smc3 heads in vivo (Figure S7).

If dissociation of Scc1 from SMC heads is not obliga-

tory, then either DNA enters the ring between SMC hinges

or our premise that cohesin traps DNA must be wrong. To

test the former possibility, we replaced the hinges of Smc1

and Smc3 by a separate pair of proteins that form pseudo-

symmetrical heterodimers, namely MP1 and p14. There

were two potentially grave stumbling blocks to this ap-

proach. The interaction between MP1 and p14 might not

be tight enough to create a tripartite ring capable of trap-

ping DNA for long periods of time, and, even if it were, the

MP1/p14 hinge might not permit formation of coiled coils

and folding of the SMC ATPase heads. We addressed the

former problem by showing that the MP1/p14 interaction

is tight enough to hold together the N- and C-terminal



Figure 6. SMC Hinge Interconnection Hinders Establishment of Cohesion and Cohesin’s Association with Chromosomes

(A) Hinge connection hinders establishment, but not maintenance, of cohesion. Cells of strain K14690 (MATa Dfpr1 TOR1-1 Dsmc3 SMC3Frb

SMC1FKBP12 PMET3-CDC20 112x tetOs TetR-GFP) were grown in medium lacking methionine and arrested in G1 phase with a factor. Cells were

released from the arrest (0 min) into medium supplemented with 2 mM methionine. Replication timing was monitored by flow cytometry

(Figure S4B). Rapamycin was added at time point 0 (left graph) or 80 min later (right graph). Cells were stained with DAPI, and sister-chromatid

cohesion was monitored by detecting fused or split GFP dots.

(B) Hinge connection hinders association of cohesin with chromosomes. Cells of strain K14697 (MATa Dfpr1 TOR1-1 Dsmc3 SMC3Frb SMC1FKBP12

SCC1-Pk9) were grown in YPD medium and arrested in G1 phase with a factor. Cells were released and incubated in YPD medium in the absence or

presence of 100 nM rapamycin. Samples were taken every 5 min, and cellular DNA contents were measured by flow cytometry (top panel). Sample

aliquots were subjected to chromatin immunoprecipitation using a-Pk-tagged antibodies. Input and ChIP DNA samples were analyzed by real-time

PCR using four different primer pairs. Efficiency of pull-down (% chromatin IP) is plotted for each time point. Positions of the primer pairs are indicated

in the bottom panel, which shows Scc1 distribution on the central part of chromosome VI in nocodazole-arrested wild-type cells.
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halves of Scc1 in a functional manner—that is, we con-

verted cohesin’s tripartite ring into a quaternary one with-

out compromising its function.

Two pieces of evidence suggest that substitution of

Smc1/Smc3 hinges by MP1/p14 did not compromise fold-

ing of SMC heads. First, hinge-substituted SMC hetero-

dimers still formed tripartite rings—that is, the heads of

Smc3 and Smc1 still bind tightly to Scc1’s N- and C-termi-

nal domains, respectively. Second, hinge substitution had

little or no effect on the stimulation of ATPase activity due

to binding of Scc1’s C-terminal domain to Smc1 heads.

Because this activity depends on ATP bound to the

Smc3 head as well as Scc1 bound to the Smc1 head (Ar-

umugam et al., 2006), it suggests that both Smc1 and

Smc3 ATPase heads of hinge-substituted Smc1/Smc3

heterodimers must be correctly folded. Despite forming

tripartite rings that enter nuclei, hinge-substituted cohesin

complexes fail to associate stably with chromosomes and

establish sister-chromatid cohesion. These data imply

that Smc1 and Smc3 hinges are not merely dimerization

domains and are consistent with the notion that they

might also act as DNA gates.

To test this, we inserted FKBP12 and Frb into the hinges

of Smc1 and Smc3 respectively and asked whether the

connection of these domains by rapamycin would inacti-

vate cohesin. Remarkably, cohesin modified in this man-

ner is fully functional in the absence of rapamycin but

inactive in its presence. Rapamycin hinders cohesin’s

association with chromosomes and the establishment of

sister-chromatid cohesion during S phase. Because rapa-

mycin has no effect on pre-established sister-chromatid

cohesion, it must inhibit an aspect of cohesin function

that occurs only transiently prior to or during DNA replica-

tion. What might this be? We suggest that this function is

the entry of DNA inside cohesin’s ring, that this requires

transient ring opening, that the ring does not open by re-

leasing Scc1 from SMC heads and must therefore involve

transient dissociation of Smc1 and Smc3 hinge domains,

that hinge substitution creates a cohesin complex that

cannot be opened, and that artificial linkage of these two

hinges by the formation of FKBP12-rapamycin-Frb com-

plexes either blocks the passage of DNA between hinges

that have transiently opened or prevents them from open-

ing sufficiently to let DNA pass through.

We cannot fully exclude at this stage the possibility that

rapamycin-mediated linkage of Smc1 and Smc3 hinges

prevents loading of cohesin onto chromosomes by

a mechanism other than preventing the creation of a

DNA entry gate. It is conceivable that SMC hinges do

not in fact open and merely provide an interaction surface

for either DNA (Hirano and Hirano, 2006; Yoshimura et al.,

2002) or factors like Scc2/Scc4 that promote cohesin’s

engagement with chromosomes. However, this notion

fails to explain why cohesin’s engagement with chromo-

somes is blocked by linking its two hinges and not by for-

mation of Frb-FKBP12 (Fpr1) complexes at Smc3 hinge

domains together with insertion of FKBP12 within

Smc1’s hinge domain. Moreover, if we accept the notion
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that cohesin functions by trapping DNA within its ring

and accept that this does not come about through disso-

ciation of Scc1 from SMC heads, then it must involve dis-

sociation of its hinge domains. We therefore favor the no-

tion that SMC hinges serve as DNA entry gates because

this seems to be the most parsimonious way of explaining

both how cohesin associates with DNA using a topological

principle and the fact that artificial interconnection of its

hinge domains hinders association with chromosomes.

Even if this explanation proves incorrect, our findings

have demonstrated an essential function for this highly

conserved SMC domain during the establishment of

sister-chromatid cohesion besides dimerization of SMC

molecules.

The notion that Smc1 and Smc3 hinges transiently dis-

sociate to permit DNA entry raises a number of interesting

problems. These domains have a very high affinity for

each other, with a KD in the low nanomolar range (Haering

et al., 2002). How could such a tight interaction be disrup-

ted? Two features of cohesin could be relevant. The first is

that the hinges interact with each other using two indepen-

dent interfaces, which creates a small hole in the middle of

the hinge-domain dimer. We suggest that opening of the

hinge would be greatly facilitated if only a single hinge-

hinge interface needed to be opened at any one stage. A

predicted dissociation constant for half of a hinge-hinge

interaction would be in the higher micromolar range (about

70 mM). The hole inside a fully closed hinge is too small to

accommodate double-helical DNA, but if one of its two in-

terfaces were broken while the other remained intact, then

twisting of the hinge domains out of plane (or in plane)

could create a pocket large enough to accommodate

DNA (see Figure 7B). If the opened interface were now

to shut and the unopened one were to open in a concerted

manner, then DNA’s departure from the pocket would al-

low both interfaces to shut, and DNA would be trapped in-

side the cohesin ring. By opening one interface at a time

and by doing so using twisting forces, the energy required

to open the hinge could be greatly reduced. An out-of-

plane twisting mechanism has recently been proposed

for the opening of PCNA rings by the RFC clamp loading

complex based on EM picture analysis and molecular dy-

namics simulations (Barsky and Venclovas, 2005). Inter-

estingly, the arrangement of secondary structural ele-

ments at PCNA interfaces resembles that in SMC hinge

interfaces (T. Nishino, personal communication). Remark-

ably, the SMC hinges are actually twisted open in such

a manner in one of the two crystal forms of the homodi-

meric hinges of T. maritima (see Figure 7A) (Haering

et al., 2002).

Another feature of cohesin that may be germane to the

problem of how its SMC hinges might open is the observa-

tion that cohesin’s stable association with chromosomes

requires hydrolysis of ATP bound to its Smc1 and Smc3

heads (Arumugam et al., 2003; Weitzer et al., 2003). We

suggest that the energy created either by ATP binding or

by hydrolysis might be used to open the hinge. It is con-

ceivable that conformational changes to Smc1 and



Figure 7. A Model for the Transport of DNA through SMC Hinges
(A) Crystal structure analysis of the bacterial SMC hinge dimer from T. maritima revealed a closed (left; PDB ID code 1GXK) and a half-open confor-

mation (right; PDB ID code 1GXJ) (Haering et al., 2002). Arrows indicate the directions of the amphipathic helices.

(B) A model for transporting DNA into a cohesin ring. Folding of the Smc1 and Smc3 coiled coils might enable interactions of SMC hinge and head

domains from the same cohesin ring, possibly creating a DNA binding surface formed by sequences of both hinge and head domains. Upon contact

with DNA, binding to or hydrolysis of ATP by the ABC ATPase generates a conformational change in the SMC heads that is transmitted to hinge do-

mains via the coiled coils, the DNA double helix, and/or direct interactions between head and hinge domains, causing disruption of one of the two

hinge-hinge contact sites. Entry of DNA into the central channel of the half-open hinge might drive transient detachment of the other SMC hinge-

domain interface. Reclosing of the SMC hinge after exit of the DNA double helix would finally trap DNA inside cohesin’s ring.
Smc3 ATPase heads brought about by the ATP hydrolysis

cycle are somehow transmitted to their hinges via the long

coiled coils that connect their head and hinge domains.

One problem with this notion is that either one but not

both of the two polypeptide chains that are part of

Smc3’s coiled coil can be severed without impairing cohe-

sin function (Gruber et al., 2003). It is difficult, albeit not im-

possible, to imagine forces being transmitted from heads

to hinges along a single polypeptide chain. Rad50 proteins
share a similar architecture with SMC proteins but use zinc

hooks rather than hinge domains for dimerization. Based

on atomic force microscopy (AFM), it was proposed that

the conformations of Rad50 coiled coils change drasti-

cally upon binding of their ABC ATPase heads to DNA

so that formation of a zinc hook within the Rad50 dimer

is blocked. This supposedly leads to intercomplex interac-

tions (Moreno-Herrero et al., 2005). However, this model is

challenged by the finding that Rad50 hook domains can
Cell 127, 523–537, November 3, 2006 ª2006 Elsevier Inc. 535



be substituted by other dimerization domains without

eliminating its DNA repair function (Wiltzius et al., 2005).

An alternative is that the coiled coils of SMC proteins ac-

tually fold into sections and thereby enable hinge domains

to interact directly with the ATPase heads that facilitate

hinge opening (Figure 7B). Electron micrographs of intact

cohesin or condensin complexes after rotary shadowing

show no signs of such a foldback structure (Anderson

et al., 2002). However, such structures were seen by

AFM with Smc2/Smc4 heterodimers when lightly fixed

with glutaraldehyde (Yoshimura et al., 2002). We have ob-

served similar foldback structures with wild-type but not

with hinge-substituted Smc1/Smc3 heterodimers under

the same conditions in which they were seen for Smc2/

Smc4 heterodimers (data not shown). Direct interactions

between hinge domains and ATPase heads might also ex-

plain how certain mutations in the SMC hinge domains of

bacterial SMCs affect ATP hydrolysis by the SMC heads

(Hirano and Hirano, 2006).

The notion that cohesin’s ring can be opened and shut

in a highly regulated manner has a number of implications.

If DNA gains entry to the cohesin ring by hinge opening,

then the process could easily be reversed—that is, DNA

that has previously been trapped by cohesin could escape

due to hinge opening. In animal cells, cohesin complexes

at centromeres remain on chromosomes until the meta-

phase/anaphase transition, whereupon cleavage by

separase is essential for their removal, while cohesin com-

plexes on chromosome arms dissociate from chromo-

somes in a separase-independent manner in response

to phosphorylation of their Scc3/SA subunit (Hauf et al.,

2005). If the latter had also associated with chromosomes

in the first place by trapping DNA within their rings, then

Scc3/SA phosphorylation must somehow cause ring

opening, which might occur due to hinge-hinge dissocia-

tion. If this scenario is correct, then a key question must be

why cohesin rings on chromosome arms can be reopened

at their hinges while others at centromeres cannot and

must therefore be opened irreversibly by cleavage of

Scc1 by separase.

The amino acid sequences of cohesin’s Smc1 and

Smc3 hinge domains are highly conserved. They are pres-

ent in bacterial SMC proteins as well as Smc2 and Smc4

from condensin and Smc5 and Smc6. If, as we propose,

cohesin associates with chromosomes by passing DNA

between its Smc1 and Smc3 hinge domains, then this

property is presumably shared by all SMC proteins. Tran-

sient dissociation of hinge domains permitting passage of

DNA inside a ring structure might therefore be a feature

that is fundamental to the activity of all complexes con-

taining SMC proteins.

EXPERIMENTAL PROCEDURES

All strains were derivatives of W303 (K699). For sequences of con-

structs and detailed genotypes, see Supplemental Data. The open

reading frames of the SCC1, SMC1, SMC3, and FPR1 genes were de-

leted by one-step PCR disruption. TOR1-1 was transferred into the
536 Cell 127, 523–537, November 3, 2006 ª2006 Elsevier Inc.
W303 background by transformation with a PCR product and selection

for rapamycin-resistant growth. The endogenous SMC1 open reading

frame was fused via a flexible linker (ESGGGGGSGGGSGGGGLE) to

the FKBP12 coding sequence by one-step tagging to produce

Smc1-FKBP12 proteins. The SMC3 and SCC1 genes were C-termi-

nally tagged with the Frb domain using the linker peptides

TSGGGGSGGGSGGGGAS and ASGGGGGSGGGSGGGGAS, re-

spectively, resulting in Smc3-Frb and Scc1-Frb. Mutations in SCC1’s

C terminus were incorporated during the tagging process. All genome

modifications were confirmed by DNA sequencing. Strains were

grown in full medium (YEP) with 2% glucose, 2% raffinose, or 2% raf-

finose plus galactose at 30�C. For G1 phase arrest, cells were incu-

bated in 5 mg/ml a factor peptide for 90 min starting at OD600 = 0.2 un-

less otherwise stated. Strains with the CDC20 gene under control of

the MET3 promoter were grown in minimal medium lacking methionine

and arrested in mitosis in YEP supplemented with 2 mM methionine for

120 min. Centrifugal elutriation was performed as described in Schwob

and Nasmyth (1993). Rapamycin was dissolved in DMSO at 1 mM con-

centration. Chromosome spreads and DNA content analysis (flow cy-

tometry) were performed as in Michaelis et al. (1997). Coimmunopre-

cipitation (ring formation assay) was performed as described in

Arumugam et al. (2003), but without arresting and temperature shifting

cells. FISH analysis was done as described in Lorenz et al. (2003). WT

and hsSMC proteins were expressed and purified as described in Ar-

umugam et al. (2006) with some modifications (see Supplemental

Data). For the ChIP protocol and qPCR primer sequences, see Supple-

mental Data. ChIP-on-chip analysis was performed as described in

Katou et al. (2003).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, seven figures, and one table and can be

found with this article online at http://www.cell.com/cgi/content/full/

127/3/523/DC1/.
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