Problem Set 3

Solutions key

- 1. (4 pts) α-Helix in Retinol Binding Protein
 - i) The helix starts at residue 146 (Pro) and ends at residue 158 (Glu) (1pt).
 - ii) 13 residues (1pt)
 - iii) **18.61** A° (α -carbon on 23 to α -carbon on 36) (1pt)
 - **iv**) ~3.5 turns (1pt)
 - v) $19.9A^{\circ}/3.5 \text{ turns} = 5.32A^{\circ}/\text{turn} (1\text{pt})$
- (4 pts) The first residue that forms a hydrogen bond is Lys 150, donating an NH to the C=O of Pro 146. (2pts) This follows the n to n+4 rule. This particular H-bond is 3.12A° long (2pts accept 2.8A° to 3.5A°). Other H-bond pairs (listed from donor to acceptor) are: Ile 151 & Glu 147; Val 152 & Ala 148; Arg 153 & Gln 149; Gln 154 & Lys 150; Arg 155 & Ile 151; Gln 156 & Val 152; Glu 158 & Gln 154; H-bond length of any of these should be 3±0.5A°.
- 3. (5 pts) β-Sheet in Retinol Binding Protein
 - i) Anti-parallel. (1pt)
 - ii) **8 strands** make up this β -sheet. (1pt)
 - iii) H-bonds are **between strands**. (1pt)
 - iv) The residues facing inward are **nonpolar/bulky/hydrophobic**. (1pt)
 - v) The inside of the barrel is lined with hydrophobic residues, creating a favorable environment for the hydrophobic retinol molecule. The binding of retinol to RBP thus increases its solubility in blood. (1 pt)
- 4. (9 pts) i) The entropy is given by: S=RlnW, where W is the number of conformations. The entropy in the folded state S_N is zero since there is only a single conformation. This is true regardless of the type of secondary structure. The entropy of the unfolded state is: S_U = R ln 9²² = R (22) ln9 = 8.31 J/mol-K x 22 x 2.2 = 401.7 J/mol-K. Therefore ΔS = S_U-S_N = 401.7 -0 = + 401.7 J/mol-K. (2 pts) (Note that the sign is positive because of the direction that the reaction was written: N→U). The entropy change would not depend on whether the peptide started out in an α-helical or β-sheet configuration because there is only one folded configuration for each. (1 pt)

ii) Assuming that each H-bond contributes 5 kJ/mol, ΔH = +110 kJ/mol (Hu-HN). (The sign is positive because an input of heat was required to unfold the peptide). At 300 K, the total free energy change for the unfolding is:

 $\Delta G = \Delta H - T\Delta S = 110,000 \text{ J/mol} - 300 (401.7 \text{ J/mol}-\text{K}) = -10,500 \text{ J/mol} = -10.5 \text{ kJ/mol}.$

$$K_{eq} = e^{-\Delta G/RT} = e^{10,500J/mol/(8.31J/mol-K)(300K)} = e^{4.2} = 66.7$$

 $f_U = \frac{K_{eq}}{(1 + K_{eq})} = \frac{66.7}{67.7} = 0.985$. Therefore 98.5% of the molecules are unfolded

at this temperature. (2 pts)

iii) At the Tm, $\Delta H = T_M \Delta S$ and $T_m = \frac{\Delta H}{\Delta S}$ Therefore, $T_m = \frac{110,000 J/mol}{401.7 J/mol - K} = 273.8$ K. (2 pts)

6. (10 pts) i) The fraction of protein unfolded (fu) at each of three temperatures is extracted

from the melting curve. From f_U, f_N (1-f_U) and K_{eq} (U/N) at the three temperatures can be derived. Plotting ln K_{eq} against 1/T generates a line on a van't Hoff plot with a slope of of -24,125.

 $\Delta H = -R \times slope = (-8.31J/mol - K) \times (-24,125) = 200,479J/mol = 200.5kJ/mol$ (7 pts)

T (K)	1/T	fu	fN	Keq=fu/fn	ln Keq
350	.00286	0.16	0.84	0.19	-1.66
360	.00278	0.5	0.5	1	0
370	.00270	0.9	0.1	9	2.2

ii) From ΔH , ΔS can be calculated:

$$\Delta S = \frac{\Delta H}{T_m}$$

Since Tm is 360 K,

$$\Delta S = \frac{200,479J/m}{360K} = 557J/m - K \ (3 \text{ pts})$$