# Lecture 27: Metabolic Pathways Part I: Glycolysis

Reading in Campbell: Chapter 17.2-17.5

#### Metabolic pathways are:

- 1. Conserved in different organisms.
- 2. Compartmentalized in Eukaryotes
- 3. Overall Irreversible (but most of the individual steps are not)
- 4. Usually committed after the first step
- 5. Regulated (usually at first step)

#### What you need to know:

- 1. Input and Output metabolites
- 2. Steps that control flux
- 3. How flux is controlled
- 4. Cellular location of metabolic Steps
- 5. Selected Enzyme Mechanisms
- 6. Selected substrates/products

#### **Central Pathways of Energy Production:**

Intracellular locations:

- Glycolysis cytosol
- Fatty Acid Oxidation: Inner matrix of mitochondria
- Citric Acid Cycle: Inner matrix of mitochondria
- Oxidative Phosphorylation: Inner membrane of mitochondria

## **Energy Currency:**

Stored in the following ways:

- High energy chemical species
  (i.e. phosphoanhydride
- bonds in ATP):High energy electron carriers
- Membrane potentials (concentration gradient and voltage difference)



Glycolysis:

- Location: cytosol
- Input: Glucose
- **Output**: Pyruvate under aerobic, lactate under anaerobic
- Energetics: 2ATP, 2NADH (rapid production of ATP from glucose)
- Key Controlling Step: PFK
- Substrate level phosphorylation
- Direct and Indirect Coupling

#### **Key Enzyme Reactions**

A: Hexokinase Reaction (step 1): Glucose + ATP → Glucose-6-P + ADP

Group transfer reaction: Phosphate is transferred from ATP to glucose.

 Traps glucose in the cell as G-6-P



## Energetic coupling: The high

energy of ATP is often used to

drive unfavorable reactions by coupling the favorable hydrolysis of ATP to an unfavorable second reaction. Consider the following 1/2 reactions:

| 1 <sup>st</sup> half reaction: | $Glucose + P_i \rightarrow Glucose - 6-P$ | + H <sub>2</sub> O | $\Delta G^{\circ} = +14 \text{ kJ/mol}$ |
|--------------------------------|-------------------------------------------|--------------------|-----------------------------------------|
| 2 <sup>nd</sup> half reaction: | $ATP + H_2O \rightarrow ADP + P_i$        |                    | $\Delta G^{\circ}$ = - 30 kJ/mol        |

Net sum:

#### B: Phosphofructokinase (PFK) step 3 [Key regulatory step]:



| Net Sum                     |      | F-6-P   | + A                | TP → F-1.6-bis           | phosphate -         |                | $\Lambda G^0 = -14 \text{ kJ/r}$ | nol |
|-----------------------------|------|---------|--------------------|--------------------------|---------------------|----------------|----------------------------------|-----|
| 2 <sup>nd</sup><br>Reaction | half | ATP     | +                  | $H_20 \rightarrow ADP +$ | P <sub>i</sub> + H⁺ |                | $\Delta G^0 = -30 \text{ kJ/m}$  | nol |
| 1 <sup>st</sup><br>Reaction | half | F-6-P - | + P <sub>i</sub> + | H⁺ → F-1,6-bisp          | hosphate + H        | <sub>2</sub> 0 | $\Delta G^0 = +16 \text{ kJ/I}$  | nol |

**C. Aldolase (step 4)**: Fructose-1-6-bisP  $\rightarrow$  dihydroxyacetone phosphate(DHAP)+glyceraldehyde-3-P (G-3-P).

This is the cleavage of a C6 sugar to give two C3 sugars.

The standard free energy for this reaction is extremely unfavorable -  $\Delta G^{\circ}$  = +23.8 kJ/mol!

But the Gibbs free energy is actually favorable,  $\Delta G = -6$  kJ/mol. Is this reaction spontaneous?



How is the concentration of G-3-P reduced to insure that the aldolase reaction is spontaneous?

This completes the "first stage" of glycolysis. Overall  $\Delta G$  for the first 5 steps under cellular conditions is -53 kJ/mol. So far, 2 ATP molecules have been consumed.

#### D. Glyceraldehyde-3-P dehydrogenase (GAPDH) step 6 - Chemical to Redox Energy:

Glyceraldehyde-3-P dehydrogenase: G-3-P + NAD<sup>+</sup>  $\rightarrow$  1,3 bisphosphoglycerate + NADH

This reaction proceeds in two steps. The first step is the oxidation of the aldehyde to the carboxylic acid (thioester) using  $NAD^+$  as the electron acceptor. This results in the formation of an covalent enzyme intermediate. The second step is the phosphorylation of the carboxylic acid.

Both reactions are catalyzed by a single enzyme.



The Reaction Steps are (see diagram)

I. ES complex, Cys is deprotonated.

II. Thio group is a nucleophile, attacks aldehyde, H is transferred to NAD<sup>+</sup> as a hydride ion (H:  $\bar{}$ ), net transfer of 2 electrons.

III. Stable, thioester intermediate, NADH is in the reduced form and 3-P-G has been oxidized.

IV. Attack of phosphate on stable acyl-enzyme intermediate, regenerating enzyme, and producing 1,3-bis phosphoglycerate.



|                      | Chemistry                                                                                               | Energetics                       |
|----------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|
| 1st half Reaction    | $G - 3 - P \rightarrow 3$ phosphoglycerate + $2e^- + H^+$<br>(aldehyde) $\rightarrow$ (carboxylic acid) | $\Delta G^{\circ}$ = -100 kJ/mol |
| 2nd half<br>Reaction | $NAD^+ + 2e^- + H^+ \rightarrow NADH$                                                                   | $\Delta G^\circ$ = +60 kJ/mol    |
| 1st Reaction<br>Sum  | $NAD^+ + H^+ + G3P \rightarrow 3PGlycerate + NADH$                                                      | $\Delta G^{\circ}$ = -40 kJ/mol  |
| 2nd Reaction         | <b>3</b> <i>PGlycerate</i> + $P_i \rightarrow$ <b>1</b> , <b>3</b> <i>bisPGlycerate</i>                 | $\Delta G^{\circ}$ = +50 kJ/mol  |
| Overall Sum          |                                                                                                         | $\Delta G^\circ$ = +10 kJ/mol    |

#### E. Phosphoglycerate kinase

(step 7):

Generation of 1<sup>st</sup> ATP by substrate level phosphorylation.

(Break-even reaction)

 $\Delta G^{\circ} = -19 kJ/mol$ 



3-phosphoglycerate

# F. Pyruvate kinase (step 10):

Generation of Second ATP by a second substrate level phosphorylation.



 $\Delta G^{\circ} = -31.7 kJ/mol$ 

## **Regulation of Biochemical Pathways:**

#### General Properties of the Regulation of Biochemical Pathways:

- Step below a convergence point is usually regulated.
- Usually steps that involve a large negative  $\Delta G$  are regulated, as these are usually irreversible.
- Opposing pathways are coordinately regulated, usually at a single key step.

#### Mechanisms of Regulation:

- Change in levels of enzymes by regulation of the synthesis/degradation. (slow)
- Change in the activity of enzymes by covalent modification (e.g. phosphorylation) of the enzyme (moderately fast)

• Change in the activity of enzymes by feedback inhibition by a chemical that is near the end of the pathway, or in another pathway (Usually allosteric activators/inhibitors). This is fast.

• Product inhibition. This is very fast.

#### **Regulation of Glycolysis:**

| Glucose ⇔ G-6-P        | Hexokinase:<br>Inhibited by G-6-P |                     |  |
|------------------------|-----------------------------------|---------------------|--|
| Fructose-6-P ⇔ F-1,6-P | Phosphofructose kinase (PFK)      |                     |  |
|                        | Activated:                        | Inhibited:          |  |
|                        | ADP, AMP                          | ATP                 |  |
|                        | F2,6-P                            | Citrate (TCA)       |  |
|                        | cAMP                              | PEP (Glycolysis)    |  |
| PEP⇔Pyr                | Pyruvate Kinase:                  |                     |  |
|                        | Activated:                        | Inhibited:          |  |
|                        | AMP,                              | ATP,                |  |
|                        | F-1,6-P                           | acetyl CoA, alanine |  |

