Ligand Binding Problem - Single Site Non-cooperative.

a) An equilibrium dialysis experiment is set-up to measure the binding affinity of PCP to the F_{ν} fragment of an antibody. A total of 1 μM of F_{ν} fragment was placed in the bag and radioactive PCP was placed outside the bag. At equilibrium, the concentration of PCP outside the bag was found to be 40 μM and the concentration of PCP inside the bag was 40.8 μM . Calculate the fractional saturation, Y, at this particular ligand concentration.

$$Y = \frac{[ML]}{[M] + [ML]} = \frac{[ML]}{[M_T]}$$

b) The experiment was repeated with two additional ligand concentrations. Estimate the K_{D} from the binding curve.

$$Y = \frac{[L]}{K_D + [L]}$$

[L](µM)	Y	Y/L
0	0	-
3.4	0.25	0.075
40.0		
100.0	0.91	0.009

Determine K_D using a Scatchard Plot.

Scatchard Plot:

$$\frac{Y}{[L]} = \frac{-1}{K_D}Y + \frac{1}{K_D}$$

A plot of Y/[L] *versus* Y will give a straight line with a slope of $-1/K_D$.

