Ligand Binding Problem - Single Site Non-cooperative.

a) An equilibrium dialysis experiment is set-up to measure the binding affinity of PCP to the F_{v} fragment of an antibody. A total of $1 \square \mathrm{M}$ of F_{v} fragment was placed in the bag and radioactive PCP was placed outside the bag. At equilibrium, the concentration of PCP outside the bag was found to be $40 \square \mathrm{M}$ and the concentration of PCP inside the bag was $40.8 \square \mathrm{M}$. Calculate the fractional saturation, Y , at this particular ligand concentration.
$Y=\frac{[M L]}{[M]+[M L]}=\frac{[M L]}{\left[M_{T}\right]}$
b) The experiment was repeated with two additional ligand concentrations. Estimate the K_{D} from the binding curve.

$$
Y=\frac{[L]}{K_{D}+[L]}
$$

$[L](\square M)$	Y	Y / L
0	0	-

$$
\begin{array}{lll}
3.4 & 0.25 & 0.075
\end{array}
$$

40.0
$\begin{array}{lll}100.0 & 0.91 & 0.009\end{array}$

Determine K_{D} using a Scatchard Plot.

Scatchard Plot:

$\frac{Y}{[L]}=\frac{\square 1}{K_{D}} Y+\frac{1}{K_{D}}$

A plot of $\mathrm{Y} /[\mathrm{L}]$ versus Y will give a straight line with a slope of $-1 / K_{D}$.

